Diagnosis of American foulbrood in honey bees: a synthesis and proposed analytical protocols

1 Laboratory of Zoophysiology, Ghent University, Ghent, Belgium
2 CIC – CIDEFI, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
3 Central Science Laboratory, York, UK
4 USDA-ARS Bee Research Lab, Beltsville MD, USA
5 Agricultural Institute of Slovenia, Ljubljana, Slovenia
6 NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden, Australia
7 Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada
8 Ministerio da Agricultura/LANAGRO/RS, Porto Alegre, Brazil
9 Bee Research Institute, Dl, Czech Republic
10 Tierhygienisches Institut, Freiburg, Germany

Introduction

American foulbrood is an infectious disease of honey bees (Apis mellifera and Apis cerana) caused by the spore-forming bacterium Paenibacillus larvae. It is characterized by the typical ‘foul’ putrescence emanating from hives containing infected brood and represents a serious, worldwide problem for apiculture (Ellis and Munn 2005). AFB is classified on list B of the Office International des Epizooties (OIE), the World Organization for Animal Health. List B diseases are defined as transmissible diseases which are considered to be of socio-economic and/or public health importance within countries and which are significant in the international trade of animals and animal products.

In the past decade, considerable progress has been made in the understanding and taxonomic reclassification of the causative agent as well as the diagnosis of AFB. Traditional methods such as the recognition of typical clinical symptoms of infection, culture of P. larvae from diseased brood, and microscopy provide effective and inexpensive means of diagnosing the disease. In addition, improved detection of P. larvae from brood and bee products using molecular techniques, immunotechniques and superior culture techniques have emerged in recent years providing a broader range of methodologies for efficient diagnosis. This review outlines current recommended strategies for the diagnosis of AFB which takes into consideration the reclassification of the causative agent to the single species P. larvae.
Pathogenic agent

White (1906) described the species *Bacillus larvae*, the pathogenic agent of AFB. Forty-four years later Katznelson (1950) described a closely related species, *Bacillus pulvifaciens*, also isolated from bee larvae but in association with a rare disease called ‘powdery scale’. Both species were transferred to a new genus *Paenibacillus* in 1993 (Ash et al. 1993) and later taxonomic revisions described them as being the same species, *P. larvae*, but separated at the subspecies level, i.e. *P. larvae* ssp. *larvae* (Pll) (formerly *Bacillus larvae*) and *P. larvae* ssp. *pulvifaciens* (Plp) (formerly *Bacillus pulvifaciens*) (Heyndrickx et al. 1996).

Genersch et al. (2006) proposed to eliminate the subspecies designation based on a polyphasic taxonomic study including colony and spore morphology, biochemical profiles using API systems, SDS-PAGE of whole cell proteins, and rep-PCR fingerprinting and pulsed-field gel electrophoresis (PFGE) of bacterial DNA. In addition, they found that experimental infection with strains identified as *Plp* also leads to the formation of glue-like larval remains that dry down to a hard scale as described for AFB. Moreover, they found that *Plp* strains could be even more virulent with no indication of powdery scale symptoms being observed during their trials. By publishing the proposed reclassification in the official journal of the International Committee on Systematics of Prokaryotes the elimination of the subspecies epithet for *P. larvae* is now validated (Genersch et al. 2006). Consequently, *P. larvae* should be considered the full and correct designation for the pathogenic agent of AFB.

Clinical symptoms

Traditionally, the creamy or dark brown glue-like larval remains that can be drawn out as a thread (ropiness) with a matchstick represent the most obvious clinical symptom of AFB (Fig. 1). This symptom is so readily recognized that ‘the matchstick test’ is often performed by the beekeeper within the apiary and forms part of the first-line warning system against AFB. However, where *P. alvei* is a secondary invader in cases of European foulbrood, clinical signs of infection may look similar to those seen with AFB. This similarity may also involve ropiness of dead brood (Gochnauer et al. 1979). Ropy remains of AFB-infected brood are principally from older larvae that die in the upright position, most often after the brood cell has been capped, but larval remains can also be found in open cells. As the infection progresses, cell cappings harbouring dead brood appear greasy, darkened and become concave and punctured with small holes. The larval remains dry down to a flat scale tightly attached to the lower brood cell wall. Very characteristic, but not commonly seen, is the decomposition of the pupal stage in which the tongue protrudes from the head, extending to the top of the brood cell or angling back towards the bottom of the cell. The pupal tongue may also persist in the dried scale.

In addition to the clinical symptoms associated with older larvae and pupae, there is the less noticeable but rapid mortality associated with young larvae, still curled at the base of the uncapped cell. Although these uncapped, infected larvae exhibit no obvious visual symptoms, adult worker bees will readily remove them, leaving only empty cells (Brødsgaard et al. 2000). The resulting mottled or spotty appearance of the brood is therefore the result of a varying pattern of healthy capped brood, uncapped cells containing the remains of diseased larvae and empty cells. Similar pathology may also occur with other bee diseases, and should alert the beekeeper to verify which disease agent is present.

Figure 1 Clinical symptoms of American foulbrood: (a) mottled appearance of the brood often points out a brood disease and should alert the beekeeper. However, similar clinical symptoms may also occur with other diseases and necessitates further examination of the sample. Very characteristic symptoms of American foulbrood are the dark brown glue-like larval remains (b), which dry down to a flat scale (c) and the decomposition of the pupal stage in which the tongue protrudes from the head (d).
Cultivation of Paenibacillus larvae

In 100 years of efforts to cultivate P. larvae, considerable progress has been made in the development of media promoting spore germination and growth, first attempted with an extract of larval honey bee tissue described by White (1907). Over time, new culture media were developed or adapted for use in AFB diagnosis: J-agar (or J medium) (Gordon et al. 1973), brain-heart infusion agar supplemented with thiamine (Gochnauer 1973), Mueller–Hinton broth, yeast extract, potassium phosphate, glucose and pyruvate agar (MYPGP) (Dingman and Stahly 1983), Columbia blood agar (Plagemann 1985), sheep blood agar (Lloyd 1986) and more recently, Paenibacillus larvae agar (PLA) (Schuch et al. 2001). MYPGP (Nordström and Fries 1995) and PLA (Schuch et al. 2001) were shown to have superior plating efficacy. PLA offers the additional advantage that the majority of micro-organisms normally present in the hive and in bee products are inhibited. Moreover, this medium permits incubation in air, whereas previously prescribed media often demanded incubation under CO₂ (Hornitzky and Nicholls 1993).

As P. larvae is a spore-forming bacterium, its isolation from biological samples is typically preceded by a heat treatment step. This will significantly reduce the risk that P. larvae colonies will become obscured by rapidly growing competitors. Nevertheless, bacteria of the genera Bacillus, Paenibacillus and Brevibacillus may continue to swarm over the plates, most often when samples other than diseased larvae (honey, pollen or adult bees) are cultured. This may necessitate the use of semi-selective media supplemented with nalidixic acid (Hornitzky and Clark 1991) and pipemidic acid (Alippi 1991, 1995).

The type of samples that can be collected for diagnosis of a suspect bee colony has also been further expanded. When the symptoms are obvious, the sampler can cut out a piece of brood comb or collect the larval remains with a swab to be forwarded to the laboratory for further examination. Smears of the remains of diseased larvae for microscopic examination can also be taken in the field (Hornitzky and Wilson 1989). When no symptoms are found, the early detection of spores will identify colonies at risk. Consequently, measures can be taken to prevent the establishment and further dissemination of the disease (de Graaf et al. 2001). Apart from brood samples, analysis can be successfully conducted on honey from the brood nest or extracted from the supers (Shimanuki and Knox 1988; Hornitzky and Clark 1991). Samples of pollen (Gochnauer and Corner 1974), wax (Gochnauer 1981), adult workers (Lindström and Fries 2005) or winter hive debris (Títéra and Haklova 2003) can also be used. Routine collection and analysis of samples can be part of an operational or regional AFB detection programme (Schuch et al. 2003).

Molecular tools

The first PCR assay for the identification of P. larvae was developed by Govan et al. (1999) and was based on the 16S rRNA gene. Dobbelere et al. (2001a) described a similar test, though the specificity of the latter was better found and a simplified protocol for the immediate analysis of larval remains was provided. Neither test could differentiate between the former Pl and Plp, a significant shortcoming during a period in which only Pl was considered the causative agent of AFB. Subsequently, several attempts were made to improve the specificity down to the former subspecies level using 16S rRNA-based PCR (Alippi et al. 2002; Piccini et al. 2002; Kilwinski et al. 2004) and others (Alippi et al. 2004a; Kilwinski et al. 2004; de Graaf et al. 2006). With the reclassification of Pl and Plp into a single species, the scope of these more specific assays have become too narrow for purely diagnostic purposes. A novel nested PCR protocol of Lauro et al. (2003) permits direct analysis of honey and hive samples. This test is extremely sensitive to P. larvae DNA and might, consequently, identify levels of P. larvae that are below those likely to be important for disease.

Aside from PCR, several other molecular tools permit the identification and/or subtyping of the species P. larvae. SDS-PAGE of whole cell proteins gives a characteristic profile for P. larvae (Hornitzky and Djordjevic 1992) and a subdivision into two clusters (Heyndrickx et al. 1996), previously used to discriminate between the previously known subspecies Pl and Plp. Gas chromatography of methylated fatty acids provides a characteristic peak pattern that allows the identification of P. larvae (Drobníková et al. 1994; Heyndrickx et al. 1996). Several DNA fingerprinting techniques have been performed for epidemiological or taxonomic purposes: RFLP (restriction fragment length polymorphism) (Djordjevic et al. 1994), ARDRA (amplified ribosomal DNA restriction analysis), RAPD (random amplified polymorphic DNA), AFLP (amplified fragment length polymorphism) (Heyndrickx et al. 1996), PFGE (Wu et al. 2005) and PCR-based genotyping using primers corresponding to conserved motifs in bacterial repetitive REP (repetitive extragenic palindromic), ERIC (enterobacterial repetitive intergenic consensus) and BOX elements (Alippi and Aguilar 1998a,b). For more information on genotyping and virulence of P. larvae we refer to the recent review by Ashiralieva and Genersch (2006).

Biochemical profile

The species P. larvae has a characteristic biochemical profile with acid from glucose and trehalose and no acid from arabinose and xylose (Gordon et al. 1973). The testing of the carbohydrate acidification profile can be carried out by
using homemade galleries (Gordon et al. 1973) or commercialized kits (Carpana et al. 1995; Dobbelare et al. 2001b; Neuendorf et al. 2004). To our knowledge, only the BIOLOG system has an accompanying software tool that recognizes the *P. larvae*-specific biochemical profile. The result of the catalase test, which is negative for *Pll*, has to be broadened to include the delayed, weak positive reactions of *P. larvae* strains which were previously classified as *Plp* (Heyndrickx et al. 1996). The production of high concentrations of proteolytic enzymes during vegetative growth and sporulation of *P. larvae* (reviewed by Chantawanakul and Dancer 2001) has long been utilized for diagnostic purposes in the Holst milk test (Holst 1946). The enzymatic digestion of milk has now been formalized into a casein hydrolysis plate assay (Schuch et al. 2001).

Bacteriophage sensitivity

Several bacteriophages have been isolated from *P. larvae* and phage sensitivity has been determined for bacterial strain typing (Drobníková et al. 1994; Stahly et al. 1999). PPL1c, a virulent mutant bacteriophage isolated from a *P. larvae* field strain, lyses nearly all former *Pll* strains (97–99%; Stahly et al. 1999; Alippi et al. 2004b). As species from the genera *Bacillus*, *Brevibacillus* and *Paenibacillus* (other than *P. larvae*) were proved to be resistant to PPL1c-induced lysis, phage sensitivity to PPLc1 offers an interesting supplementary tool for *P. larvae* identification (Fig. 2) (Stahly et al. 1999).

Immunotechniques

Several different antibody-based techniques have been developed for diagnosis of AFB. These include the immunodiffusion test (Peng and Peng 1979), the immunofluorescence assay (Otte 1973), where fluorochrome-conjugated polyclonal antibodies are used to visualize specific bacteria (Toshkov et al. 1970; Zhavnenko 1971), and the enzyme-linked immunosorbent assay using monoclonal antibodies (Olsen et al. 1990). Recently, a lateral flow device test kit for AFB detection has been developed (Vita, Hants, UK). It allows rapid confirmatory diagnosis in the field and is now commercially available. The utility of each of these diagnostic tests is highly dependent on the specificity of the polyclonal or monoclonal antibody preparations used. Cross-recognition of closely related bacteria should be avoided.

Microscopy

The diagnosis of AFB by microscopic examination of carbol fuchsin-stained smears of dead larvae is entirely satisfactory (Hornitzky and Wilson 1989). The test is based

Figure 2 Diagnosis of American foulbrood: nearly all *Paenibacillus larvae* strains are sensitivity to PPL1c, a virulent mutant bacteriophage, resulting in plaque formation in a simple phage sensitivity test (a). Microscopic examination of carbol fuchsin-stained smears of larval remains permits rapid confirmation of clinically diseased larvae, based on the morphology of the spores of *Paenibacillus larvae* (b) (bar = 10 μm); spores of *Paenibacillus alvei* (c) are larger and stain more deeply.
<table>
<thead>
<tr>
<th>Technique</th>
<th>Principle</th>
<th>Samples</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivation</td>
<td>Germination and growth of Paenibacillus larvae spores on solid medium</td>
<td>Brood, honey, adult bees, pollen, wax, hive debris</td>
<td>Detection of P. larvae in bee products facilitates tracing infection sources</td>
<td>Requires an additional identification step of suspect P. larvae colonies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Very suitable for American foulbrood (AFB) detection programmes</td>
<td>Semi-selective media usually required to avoid contamination with other bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Permits quantification of the spore-load</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Allows to test spore viability</td>
<td></td>
</tr>
<tr>
<td>Biochemical profiling</td>
<td>Identification of the species of bacteria based on the carbohydrate</td>
<td>Bacterial colonies</td>
<td>Is a traditional microbiological approach that can be performed in most microbiology laboratories</td>
<td>Requires a first step of isolation and cultivation of bacteria</td>
</tr>
<tr>
<td></td>
<td>acidification profile, the catalase test and the casein hydrolysis plate test</td>
<td></td>
<td></td>
<td>Results for a full profile are available after 2 to 3 weeks, although identification as P. larvae can be based on Gram reaction, catalase reaction and colony morphology</td>
</tr>
<tr>
<td>Phage sensitivity test</td>
<td>Plaque formation in a semi-solid medium as a result of bacterial cell lysis</td>
<td>Bacterial colonies</td>
<td>Easy and simple test to perform</td>
<td>Requires a first step of isolation and cultivation of bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rapid diagnosis of AFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low cost</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>Amplification of specific bacterial DNA using a single primer set</td>
<td>Bacterial colonies, brood, honey</td>
<td>Permits rapid confirmation without cultivation step starting from diseased brood</td>
<td>Needs sophisticated equipment</td>
</tr>
<tr>
<td>Nested PCR</td>
<td>Amplification of specific bacterial DNA by using external and internal primer sets in subsequent reactions</td>
<td>Brood, honey, adult bees</td>
<td>Permits rapid confirmation starting from a broad range of samples</td>
<td>Needs sophisticated equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Because of its high sensitivity very suitable for AFB detection programmes</td>
<td>Can identify levels of P. larvae that are below those likely to be important for disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Can identify the presence of dead spores or spores that fail to germinate, both not important for disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nested PCRs are more prone to contamination</td>
</tr>
<tr>
<td>Microscopy</td>
<td>Morphological identification of P. larvae spores</td>
<td>Brood</td>
<td>Smears can be made in the field and forwarded to the laboratory for examination</td>
<td>Only for confirmation of clinically diseased larvae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rapid diagnosis of AFB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low cost</td>
<td></td>
</tr>
<tr>
<td>Immunotechniques</td>
<td>Different tools for identification based on specific antigen–antibody interactions</td>
<td>Brood</td>
<td>The commercialized lateral flow device permits easy confirmation of clinical AFB in the field</td>
<td>Utility of each test is highly dependent on the specificity of the antibody preparation used</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rapid diagnosis of AFB</td>
<td></td>
</tr>
</tbody>
</table>
on detecting P. larvae spores. The spores of P. alvei – an important secondary invader in cases of European foulbrood which may cause AFB-like symptoms (see above) – can be differentiated morphologically from P. larvae spores because they are larger (about 2·0 × 0·8 μm) and stain more deeply with carbol fuchsin than P. larvae spores which are 1·3 × 0·6 μm (Fig. 2) (Hornitzky and Wilson 1989).

Conclusions and future prospects

With the new designation of the pathogenic agent of AFB, an important obstacle for the diagnosis of AFB has been eliminated. Molecular biological techniques have become increasingly accurate and sensitive for identifying P. larvae in honey bees and hive materials (Table 1). Nevertheless, biochemical profiling and bacteriophage sensitivity of suspect bacterial strains, microscopic examinations and immunotechniques provide entirely adequate alternatives (Table 1).

In the future, it may also be possible to expand genetically based diagnoses to include specific traits of interest to P. larvae researchers and regulators (e.g. antibiotic resistance, virulence and geographical source). With funding from the U.S. Department of Agriculture, an effort to sequence, assemble and annotate the P. larvae genome has been ongoing since 2004 (http://www.hgsc.bcm.tmc.edu/projects/microbial/). This project is providing numerous candidates for genes involved in P. larvae pathogenesis (Evans and Pettis 2005), along with polymorphic regions that can be used to develop new standardized tests for intraspecific boundaries. Having a genome sequence in hand should be especially helpful for identifying specific traits that make this such a virulent pathogenic agent and that regulate its activation during infection.

References

bacillus larvae larvae from beehive winter debris. Apiacta 38, 131–133.
Toshkov, A., Valarianov, T. and Tomov, A. (1970) The immu-
nofluorescence method and the quick and specific diagno-

eau of Entomology.
Wu, X.Y., Chin, J., Ghalayini A. and Hornitzky M. (2005) Pulsed-field gel electrophoresis typing and oxytetracycline sensitivity of Paenibacillus larvae subsp. larvae isolates of Australian origin and those recovered from honey impor-
Zhavnenko, V.M. (1971) Indirect method of immunofluores-