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Summary 

American foulbrood is one of the most devastating diseases of the honey bee. It is caused by the spore-forming, Gram-positive rod-shaped 

bacterium Paenibacillus larvae. The recent updated genome assembly and annotation for this pathogen now permits in-depth molecular 

studies. In this paper, selected techniques and protocols for American foulbrood research are provided, mostly in a recipe-like format that 

permits easy implementation in the laboratory. Topics covered include: working with Paenibacillus larvae, basic microbiological techniques, 

experimental infection, and “’omics” and other sophisticated techniques. Further, this chapter covers other technical information including 

biosafety measures to guarantee the safe handling of this pathogen. 

 

Métodos para la investigación de la loque americana 

Resumen 

La loque americana es una de las enfermedades más devastadoras de la abeja melífera, causada por el bacilo, formador de esporas Gram-

positivo Paenibacillus larvae. El reciente ensamblaje y anotación del genoma de este patógeno permite actualmente la realización de 

profundos estudios moleculares. En este trabajo, se proporcionan técnicas y protocolos seleccionados para la investigación de la loque 

americana, principalmente bajo la forma de protocolos de trabajo con una estructura similar al de las recetas, para facilitar su implementación 

en el laboratorio. Los temas desarrollados incluyen: el trabajo con Paenibacillus larvae, técnicas básicas microbiológicas, la infección 

experimental, y "'ómicas" y otras técnicas sofisticadas. Además, este capítulo abarca otro tipo de información técnica, incluyendo medidas de 

bioseguridad para garantizar la seguridad en el manejo de este patógeno. 
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美洲幼虫腐臭病研究的标准方法 

美洲幼虫腐臭病是最具毁灭性的疾病之一，由革兰氏阳性杆状菌 Paenibacillus larvae 引起。近年来，随着基因组学的开展，该病原体的基因组

组装和注释已成为开展，深入的分子研究成为可能。本文提供了经选择的美洲幼虫腐臭病研究技术和实验程序，大多数以“食谱”的格式给出， 

很容易在实验室开展操作。覆盖的主题包括：Paenibacillus larvae 的处理技术，基本微生物技术、实验感染技术、“组学”以及其他的一些复杂技

术。此外，本章还包含了生物安全的评价方法，以确保安全的开展该病原体的研究  
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1. Introduction 
 

American foulbrood (AFB) is a devastating brood disease of the honey 

bee caused by the spore-forming, Gram-positive rod-shaped 

bacterium Paenibacillus larvae. AFB is one of the bee diseases listed in 

the OIE (Office International des Epizooties – the World Organization 

for Animal Health) Terrestrial Animal Health Code (2011) and member 

countries and territories are obliged to report its occurrence. In 2006, 

a draft of the P. larvae genome was published at an estimated 5-6x 

coverage (Qin et al., 2006). Last year, this coverage was further 

extended and the genome sequence was further annotated with a 

combination of bioinformatics and proteomics (Chan et al., 2011). 

These efforts will certainly help to usher in the next level of research 

for this economically important pathogen, ultimately allowing us to 

better understand the intimate relationship between the pathogen and 

its host. More generally, the honey bee / AFB system provides a 

wealth of opportunities and tools for addressing basic questions 

regarding microbe-microbe interactions, host immunity, strain 

virulence, and horizontal transmission, among others. 

In the present paper, selected techniques and protocols in 

American foulbrood research are provided, mostly in a recipe-like 

format that permits easy implementation in the laboratory. The 

different topics that are covered include: working with Paenibacillus 

larvae, basic microbiological techniques, experimental infection and 

“’omics” and other sophisticated techniques. Thus, the chapter covers 

a broad set of technical information going from biosafety measures to 

guarantee the safe handling of this pathogen to the expression of 

heterologous proteins in P. larvae. Techniques exclusively related to 

the diagnosis of AFB are not included as they have been reviewed 

elsewhere (de Graaf et al., 2006a; OIE, 2008).  

 

 

2. Working with Paenibacillus larvae 

2.1. Biosafety measures 

In some countries, microbial species are categorized in different 

classes based on biosafety risk. Each biosafety risk class has its own 

recommendations with respect to facility design, safety equipment, 

and working practices (de Graaf et al., 2008). This classification 

mostly takes into account the risk for human health, potential for 

dispersal of the disease, and the potential economic impact of the 

disease. However, a generally accepted biosafety risk classification 

has not been prescribed for P. larvae. Consideration of the severity of 

clinical American foulbrood infections in honey bee colonies, the 

contagiousness, the longevity of the spores, the legal context of AFB 

(a notifiable disease), and the economic value of honey bee 

pollination services, justifies P. larvae classification as an organism 

with ‘high biosafety risk for animals’. Table 1 summarizes basic 

biosafety practices - mainly in accordance with the Belgian model 
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(http://www.biosafety.be/) - that should be considered when 

manipulating P. larvae for research or diagnosis. It should be noted 

that P. larvae has been safely cultured in the laboratory for decades 

using only standard bacteriological procedures (i.e. aseptic handling 

techniques and careful decontamination of biological waste), and to 

date, no known AFB outbreaks due to intentional/accidental 

laboratory release of this organism have been reported. 

 

2.2. Strains 

Various P. larvae strains can be obtained from bacterial culture 

collections. However, many of these collection agencies store exactly 

the same strains but with their own strain designations. This fact is 

relevant when comparing different P. larvae strains for research 

purposes, or when using strains as positive controls in diagnosis or 

species identification. Table 2 shows many of the important strains 

that are available in these culture collections and shows some 

alternate designations. With regard to obtaining strains, it should be 

noted that certain countries have import/export and interstate 

transport shipping regulations regarding the movement and storage of 

this pathogen (http://www.biosafety.be/RA/Class/ListBact.html). 

 

2.3. Sampling for AFB monitoring or diagnosis  

Testing for the presence of P. larvae may be carried out for different 

reasons – for example either as part of national monitoring or 

prevention programmes, or as part of scientific research projects such 

as epidemiological studies. The proper collection procedure depends 

on whether the testing is to be carried out following the observation 

of suspected clinical signs of AFB, or the testing is part of general 

surveillance to identify a potential sub-clinical presence of P. larvae in 

colonies within a population. These considerations are addressed in 

the OIE Manual of Diagnostic Tests and Vaccines for Terrestrial 

Animals vol.1 (OIE, 2008), and we advise readers to consult the AFB 

chapter in that resource. 

 

 

3. Basic microbiological techniques 

3.1. Cultivation 

As P. larvae is a spore-forming bacterium, its isolation from biological 

samples is typically preceded by a heat treatment step to kill all 

vegetative microorganisms. This step significantly reduces the risk 

that P. larvae colonies will be masked by competitors. Different 

genotypes of P. larvae show variation in germination ability, and their 

response to heat treatment is variable (Forsgren et al., 2008). MYPGP 

agar (Dingman and Stahly, 1983) is routinely used to cultivate P. 

larvae for AFB diagnosis. This medium makes incubation under CO2 

unnecessary although the presence of 5% CO2 significantly increases 

germination (Nordstrom and Fries, 1995). Contaminants of the genera 

Bacillus and Brevibacillus, as well as other Paenibacillus species, are 

http://www.biosafety.be/
http://www.biosafety.be/RA/Class/ListBact.html
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Table 1. Biosafety rules mainly in accordance to the Belgian model; http://www.biosafety.be/.  As this model is very restrictive, we have 

indicated the rules that are minimally (M) required. The other biosafety rules should be considered optional depending on the demands of the 

responsible authority. 

Topic Measurement 

Facility design 

  

- The laboratories are physically separated from other work areas in the building. 

- The access to the laboratories are locked if the zone or corridor access is not reserved. The doors have automatic closing if they open 

directly into a public area. 

- (M) The furniture has been designed to allow easy cleaning and disinfection, and easy insect and rodent control. 

- (M) There is a sink for washing and decontamination of hands in the laboratory. 

- (M) There are coat hooks or a dressing room equipped with protective clothing. Normal clothing and protective clothing should remain 

separated. 

- (M) The tables are easy to clean, water impermeable and resistant to acids, alkalis, organic solvents, disinfectants and decontamination 

agents. 

Safety  

equipment 

- If the laboratory is equipped with a microbiological safety cabinet (MSC) of class II, it must be localized as such that it does not disturb 

the air flow in the room. It should be kept at a sufficient distance from windows, doors, and places with frequent passage, vents for air 

intake or outlet. The MSC should be checked and certified upon purchase or relocation, as well as at least once a year afterward. 

- There is an autoclave available in the building if the biological waste and/or biological residues shall be inactivated by steam sterilization. 

- The centrifuge that will be used is available in the containment zone.  If this is not the case, and centrifugation is done outside the 

containment zone, the tubes and the rotors should be free of leaks. 

Working  

practices 

  

- Access to laboratories is restricted to persons approved by the responsible authority, and these persons have been informed of the 

biological risk. 

- Laboratory doors should display: the biohazard sign, the containment level (if applicable), the coordinates of the controller. 

- (M) Protective clothing is worn. This protective clothing should not be worn outside the laboratory. 

- There are gloves available for staff. 

- The windows must remain closed during experiments. 

- (M) Viable (micro-) organisms must be physically contained in closed systems (tubes, boxes, etc.), when they are not being manipulated. 

- (M) Splashes or aerosols should be minimized, and their spread must be controlled by appropriate equipment and work practices. 

- In no case may a horizontal laminar flow cabinet used for manipulation of pathogenic organisms. 

- (M) Mechanical pipetting is required.  Pipetting by mouth is prohibited. 

- (M) Drinking, eating, smoking, use of cosmetics, handling contact lenses and storage of food for human consumption is prohibited in 

the laboratories. 

- A register of all manipulated or stored pathogenic organisms should be kept. 

- The control measures and equipment should be inspected regularly and in an appropriate manner. 

- (M) Hands should be washed when leaving the laboratory, when another activity is started, or when deemed necessary. 

- (M) After completion of the work, or when biological material has been spilled, the work surfaces should be disinfected. 

- There is a note available for the staff describing the correct use of the disinfectants. This memo specifies for a given purpose, the  

disinfectant that must be used, the necessary concentration and contact time. 

- The staff is trained in relation to biosafety issues and is regularly monitored and retrained. 

- A biosafety manual has been written and adopted.  The staff is informed of the potential risks and must read the biosafety regulations 

that are applicable. Instructions that must be followed in case of accident should be posted in the laboratory. 

- The biohazard sign is posted in incubators, freezers, and nitrogen tanks containing biological material ‘high biosafety risk for animals’. 

- An effective insect and rodent control program is applied. 

Waste  

management 

- (M) Contaminated biological waste and/or biological residues and contaminated disposable equipment should be inactivated by an 

appropriate, validated method before it is discharged--e.g., by autoclaving or by incineration. The incineration is performed by an authorized 

company.  The waste is collected in secure and hermetically sealable containers. These should be closed for transport. 

- (M) Contaminated material (glassware, etc.) is inactivated by an appropriate, validated method before cleaning, reuse and/or destruction. 

inhibited by nalidixic acid (Hornitzky and Clark, 1991) and pipemidic 

acid (Alippi, 1991; 1995). Apart from brood samples, food stores 

(honey, pollen and royal jelly), adult workers, and wax debris can also 

be used to detect the presence of P. larvae spores. 

The outline of the cultivation procedure starting from brood 

samples is as follows: 

1. Prepare an aqueous solution containing P. larvae spores by 

taking twice samples with a sterile swab from a brood comb 

(each time multiple brood cells should be sampled), and 

subsequently suspending them in 5 ml of phosphate buffered 

saline (PBS). 

2. Incubate different aliquots of the spore suspension at 80, 85, 

90, 95 and 100°C  for 10 min (Forsgren et al., 2008). 

P. larvae occurs in two forms: vegetative cells and spores. Only 

http://www.biosafety.be/
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Table 2. Strains of Paenibacillus larvae. 

Species 
Old subsp.  
classification 

Strain no. Other designation Source 

Paenibacillus larvae larvae LMG 9820T 

ATCC 9545T Foulbrood of honey bees 

DSM 7030T   

NRRL B-2605T E C Holst #846 

LMG 15969T   

Paenibacillus larvae larvae LMG 14425 ATCC 25747 
Ohio, USA, diseased honey bee 
larvae 

Paenibacillus larvae larvae LMG 15969T See LMG 9820T See LMG 9820T 

Paenibacillus larvae larvae LMG 16245 NRRL B-3650 

Diseased honey bee larvae 
L Bailey, Rothamsted Expt. 
Station, Harpenden, UK. strain 
Australia (“Victoria”) 

Paenibacillus larvae larvae LMG 18149 Hornitzky 89/2302/4 Victoria, Australia, honey bee 

Paenibacillus larvae pulvifaciens LMG 6911T 

ATCC 13537T Dead larvae honey bee 

DSM 3615T   

IFO 15408T   

NCIMB 11201T   

NRRL B-3688T   

NRRL B-3685T   

NRRL B-3670T   

LMG 16248T   

LMG 15974T   

Paenibacillus larvae pulvifaciens LMG 14427 ATCC 25367 Unknown 

Paenibacillus larvae pulvifaciens LMG 14428 ATCC 25368 Unknown 

Paenibacillus larvae pulvifaciens LMG 15974T See LMG 6911T See LMG 6911T 

Paenibacillus larvae pulvifaciens LMG 16247 NRRL B-3687 
(1949), honey bee larvae, H 
Katznelson #754 

Paenibacillus larvae pulvifaciens LMG 16248T See LMG 6911T See LMG 6911T 

Paenibacillus larvae pulvifaciens LMG 16250 NRRL B-14154 Unknown 

Paenibacillus larvae pulvifaciens LMG 16251 

CCM 38 Unknown 

CCUG 7427   

NCFB 1121   

NRRL NRS-1283 
Powdery scale, H Katznelson 
#113 

Paenibacillus larvae pulvifaciens LMG 16252 
DSM 8443 Dead honey bee larvae 

NRRL NRS-1684   

spores are infectious to honey bees. While P. larvae sporulates and 

grows efficiently in the haemolymph of bee larvae, most strains grow 

poorly in artificial media. Different culture media have been developed 

for P. larvae cultivation. MYPGP agar (Dingman and Stahly, 1983) 

yielded the highest percentage of spore recovery, while J-agar 

(Hornitzky and Nicholls, 1993), brain heart infusion agar (BHI) 

(Gochnauer, 1973), Columbia sheep blood agar (CSA) (Hornitzky and 

Karlovskis, 1989) proved to be less efficient in this respect (Nordström 

and Fries, 1995). Other media used for the cultivation of P. larvae are 

PLA agar (Schuch et al., 2001) and T-HCl-YGP agar (Steinkraus and 

Morse, 1996). PLA medium shows superior plating efficacy and also 

the advantage of inhibiting the majority of micro-organisms normally 

present in the hive and in bee products. T-HCl-YGP agar is the 

medium of choice for cultivation P. larvae starting from honey 

(Steinkraus and Morse, 1996). When starting from diseased larvae, 

nalidixic acid is necessary to avoid growth of P. alvei. When starting 

from other sources (e.g. honey), pipemidic acid prevents contamination 

with other spore-forming bacteria. 



MYPGP agar (per litre): 

 10 g Mueller-Hinton broth (Oxoid CM0405) 

 15 g yeast extract 

 3 g K2HPO4 

 1 g Na-pyruvate 

 20 g agar 

 Autoclave at 121°C/15 min. 

 Add 20 ml 10% glucose (autoclaved separately). 

 

BHI agar: 

 Suspend 47 g brain heart infusion agar (Oxoid CM1136) in 1 

litre of distilled water. 

 Autoclave at 121°C for 15 min. 

 Add 1 mg thiamine hydrochloride per litre. 

 

CSA-agar: 

 Dissolve 39 g Columbia blood agar base (Oxoid CM0331) in 1 

litre distilled water. 

 Autoclave at 121°C/15 min. 

 Supplement with 50 ml sterile defibrinated blood (at 50°C). 
 

 

T-HCl-YGP (per litre): 

 15 g yeast extract 

 1 g pyruvic acid 

 200 ml 0.1 M Tris-HCl, pH 7.0 

 20 g agar 

 Autoclave at 121°C/15 min. 

 Add 40 ml 10% glucose (autoclaved separately). 

 

J agar (per litre): 

 5 g tryptone 

 3 g K2HPO4 

 15 g yeast extract 

 20 g agar 

 Adjust pH to 7.3 to 7.5. 

 Autoclave at 121°C/15 min. 

 Add 20 ml 10% glucose (autoclaved separately). 

 

PLA medium consists of three different media supplemented with egg 

yolk. Equal quantities (100 ml) of sterile, molten Bacillus cereus 

selective agar base (Oxoid CM617), trypticase soy agar (Merck 5458) 

and supplemented nutrient agar (SNA) are combined and mixed. SNA 

is composed of (per litre): 

 23 g nutrient agar 

 6 g yeast extract 

 3 g meat extract 

 10 g NaCl 

 2 g Na2HPO4 

 Adjust pH to 7.4 ± 0.2. 
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All solid media are sterilized at 121°C for 15 min. After the three 

molten media are combined 30 ml of 50% egg-yolk suspension is 

added to form the PLA medium. 

Cool the media to 50°C and add the antibiotics to a final 

concentration of 20 µg/ml for nalidixic acid and 10 µg/ml for pipemidic 

acid. 

 Nalidixic acid stock solution (1 mg/ml) is prepared by 

dissolving 0.1 g in 2 ml of 1 M NaOH and diluting to 100 ml 

with 0.01 M phosphate buffer (pH 7.2). 

 Pipemidic acid stock solution (2 mg/ml) is prepared by 

dissolving 0.2 g in 2 ml of 1 M NaOH and then diluting to 100 

ml with 0.01 M phosphate buffer (pH 7.2). 

 Both antibiotic solutions are filter sterilized. 

The medium is poured (20 ml) into sterile Petri dishes and plates 

are dried before use (15 min). 

Plates inoculated with 150 µl heat-shocked spore suspension are 

incubated at 35°C up to 6 days in either aerobic conditions or under 

an atmosphere of 5-10% CO2. Vegetative bacteria are grown 

overnight at 35°C without heat-shock treatment. 

The outline of the procedure starting from honey samples is as 

follows: 

1. Dilute 20 g of honey in 20 ml PBS. 

2. Shake vigorously. 

3. Centrifuge the suspension 40 min at 6,000 x g to harvest the 

spores. 

4. Resuspend the pellet in 1 ml of PBS. 

5. Heat treat and plate this spore containing aqueous solution as 

described above. 

 

3.2. Identification 

Often the first step in the identification of P. larvae growing on solid 

media is the verification of its growth rate and colony morphology. 

Visible colonies may appear on the second day of incubation. 

However, if no colonies emerge it is advisable to extend the 

incubation time for a few more days. Two serial subcultures should be 

grown to insure culture purity. Pure P. larvae colonies have a 

characteristic morphology but this appears to be highly dependent on 

the medium that was used (see OIE, 2008). Using P. larvae reference 

strains is highly advisable. 

Some non-molecular identification protocols exist and provide a 

good alternative for diagnostic purposes when sophisticated 

equipment is lacking (see OIE, 2008). However, for research purposes 

we recommend a PCR-based identification of P. larvae. Several PCR 

methods have been described (reviewed by de Graaf et al., 2006a), 

but one in particular based on the 16S rRNA gene (Dobbelaere et al., 

2001) has proven its robustness in the past decade. A detailed 

description is given here below. Primers are listed in Table 3. 
 

 

 

 

 

 



 

3.2.1. Bacterial DNA extraction 

Bacterial DNA extraction can be done using commercialized kits/

matrices (InstaGene matrix, Bio-Rad, Genersch and Otten, 2003; 

Genome DNA Extraction kit, Sigma, Antúnez et al., 2007). However, 

heating the bacterial suspension at 95°C for 15 min works also fine 

for simple species identification. 

 

3.2.2. Polymerase chain reaction 

PCR reactions (modified from Dobbelaere et al., 2001) are set up as 

50 µl mixtures containing: 

 1-5 µl template DNA 

 50 pmol forward (AFB-F) and reverse primer (AFB-R); 

(primers used by Govan et al., 1999 also work well) 

 10 nmol of each dNTP 

 1-2.5 U of Taq polymerase in the appropriate PCR buffer  

containing 2 mM MgCl2. 

Use the following PCR conditions: a 95°C (1-15 min) step; 30 

cycles of 93°C (1 min), 55°C (30 sec), and 72°C (1 min); and a final 

cycle of 72°C (5 min). 

 

3.3. Genotyping 

The availability of standardized techniques that allow the 

discrimination of different P. larvae strains is essential for studying the 

epidemiology of AFB. This will allow scientists to identify outbreaks of 

the disease, determine the source of infection, determine the 

relationship between outbreaks, recognize more virulent strains, and 

monitor prevention and treatment strategies. 

To date different techniques have been used in order to evaluate 

the diversity of P. larvae isolates. Some of them are based on the 

analysis of phenotypic characteristics, such as study of cell and colony 

morphology, analysis of whole bacterial proteins by SDS-PAGE or 

biochemical profile, among others (Hornitzky and Djordevic, 1992; 

Neuendorf et al., 2004; de Graaf et al., 2006a; Genersch et al., 2006; 

Antúnez et al., 2007). During the last decade methods based on 

genetic analysis have gained more attention. Different strategies have  

been used to evaluate the genetic diversity of P. larvae, including  
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restriction endonuclease fragment patterns (Djordjevic et al., 1994; 

Alippi et al., 2002), pulsed-field gel electrophoresis (Wu et al., 2005; 

Genersch et al., 2006), amplified fragment length polymorphism (de 

Graaf et al., 2006b), ribotyping and denaturing gradient gel 

electrophoresis (Antúnez et al., 2007). Nevertheless, some of these 

techniques differentiating P. larvae genotypes, have not been adopted 

by the scientific community. 

An appropriate genotyping method should be highly discriminatory, 

but also demonstrate interlaboratory and intralaboratory reproducibility. 

It should be easy to use and interpret (Genersch and Otten, 2003). 

For these reasons, the most utilized method is rep-PCR, or PCR 

amplification of repetitive elements (Versalovic et al., 1994), although 

presently its reproducibility in other labs has not been proven. There 

are three sets of repetitive elements randomly dispersed in the 

genome of bacteria, enterobacterial repetitive intergenic consensus 

(ERIC) sequences, repetitive extragenic palindromic (REP) elements, 

and BOX elements (which includes boxA, boxB, and boxC). Primers to 

amplify those elements have been reported and proved to be useful 

for subtyping of Gram-positive and Gram-negative bacteria (Versalovic 

et al., 1994; Olive and Bean, 1999). 

rep-PCR has been widely used for the study of P. larvae (Alippi 

and Aguilar, 1998a, 1998b; Genersch and Otten, 2003; Alippi et al., 

2004; Antúnez et al., 2007; Peters et al., 2006; Loncaric et al., 2009). 

The most useful pair of primers are ERIC1R-ERIC2, which allowed the 

differentiation of four different genotypes (ERIC I, II, III and IV) 

(Genersch et al., 2006). Genotypes ERIC I and II corresponds to the 

former subspecies P. l. larvae while genotypes ERIC III and IV 

corresponds to the former subspecies P. l. pulvifaciens (Genersch, 

2010). 

P. larvae genotype ERIC I is the most frequent genotype and is 

present in Europe and in America, genotype ERIC II seems to be 

restricted to Europe and genotypes ERIC III and IV have not been  

identified in field for decades, but exist as few isolates in culture 

collections (Genersch, 2010). In order to enhance the discrimination 

of strains, the analysis using ERIC primers can be complemented with 

the use of other primers. The use of BOXA1R primer allowed the 

Table 3. Primer sets for identification and genotyping of P. larvae by PCR. 

Name Sequence 
PCR- 

product size 
Reference 

AFB-F 

AFB-R  

5'-CTTGTGTTTCTTTCGGGAGACGCCA-3' 

5'-TCTTAGAGTGCCCACCTCTGCG-3' 
1106 bp Dobbelaere et al., 2001 

Primer 1 

Primer 2  

5’-AAGTCGAGCGGACCTTGTGTTTC-3’ 

5-’TCTATCTCAAAACCGGTCAGAGG-3’ 
973 bp 

Govan et al., 1999 

  

ERIC1R 

ERIC2  

5´-ATGTAAGCTCCTGGGGATTCAC-3´ 

5´-AAGTAAGTGACTGGGGTGAGCG-3´ 
Several amplicons Versalovic et al., 1994 

BOXA1R  5´-CTACGGCAAGGCGACGCTGACG-3 Several amplicons Versalovic et al., 1994 

MBO-REP1 5´-CCGCCGTTGCCGCCGTTGCCGCCG-3 Several amplicons Versalovic et al., 1994 



discrimination of four banding patterns in America, all of them 

belonging to genotype ERIC I (Alippi et al., 2004; Antúnez et al., 2007) 

and three in Europe (Genersch and Otten, 2003; Peters et al., 2006; 

Loncaric et al., 2009). Primers BOX B1 and BOX C1 did not amplify  

P. larvae DNA (Genersch and Otten, 2003). When REP primers were 

used, four banding patterns were found in America and Europe 

although results could not be compared since different pairs of 

primers (REP1R-I and REP2-I and MBO REP1 primers) were used 

(Alippi et al., 2004; Kilwinski et al., 2004; Loncaric et al., 2009). 

Protocols for subtyping of P. larvae are provided below. 

Restriction fragment length polymorphic (RFLP) analysis of 

bacterial genomes, as visualized via pulsed-field gel electrophoresis 

(PFGE), is also a very effective procedure for bacterial genotyping 

(PFGE-typing). PFGE-typing of 44 P. larvae isolates, obtained from 

honey bee larval smears and honey samples collected in Australia and 

from Argentinean honey, has demonstrated resolution of this 

bacterium into 12 distinct genotypes when using restriction 

endonuclease XbaI (Wu et al., 2005). Outlined below is a PFGE-typing 

procedure for P. larvae. This procedure is presented as a three-part 

operation of genomic DNA preparation, restriction digestion of DNA, 

and then electrophoresis of the digested DNA.  Performance of PFGE-

typing is labour intensive. Also, many factors can contribute to an 

unsuccessful electrophoresis run. Therefore, troubleshooting PFGE 

and helpful hints for performing this technique can be found in the 

protocols section of the Bio-Rad website (http://www.bio-rad.com/

evportal/en/US/LSR/Solutions/LUSORPDFX/Pulsed-Field-Gel-

Electrophoresis). 

 

3.3.1. PCR amplification of repetitive elements 

Polymerase chain reaction (according to Genersch and Otten, 2003): 

1. Carry out PCR reactions in a final volume of 25 μl consisting of 

1 × reaction buffer and a final concentration of 2.5 mM MgCl2, 

250 μM of each dNTP, 10 μM of primer, and 0.3 µg of Hot 

start Taq polymerase. Five to ten µl of template DNA is added 

to the reaction. 

2. The cycling conditions are: an initial activation step at 95°C 

for 15 min, 35 cycles at 94°C for 1 min, 53°C for 1 min, and 

at 72°C for 2.5 min, and a final elongation step at 72°C for 10 

min. 

3. Analyse five µl of the PCR reaction by electrophoresis on 0.8% 

agarose gel in TAE or TBE buffer. 

4. Stain the amplified bands by incubation of the agarose gel in 

ethidium bromide (0.5 μg/ml in water) for 30 min. 

5. Visualize under UV light and photograph using a digital 

camera. 

6. Compare obtained fingerprints visually or using specific 

 analysis programs. 

Independent PCR reactions should be performed using primers 

ERIC1R/ERIC2, BOXA1R and MBO-REP1 (Table 3). 
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Modifications of the present protocol, such as those reported by Alippi 

et al. (2004) or Antúnez et al. (2007) also resulted useful, allowing 

the differentiation of P. larvae genotypes. 

Interpretation of the results: 

 ERIC1R-ERIC2 primers: four different genotypes (ERIC I, II, 

III and IV) can be distinguished (Genersch et al., 2006). 

 BOXA1R primers: three different patterns can be found in Europe 

patterns 

can be found in America (A, B, C and D) (Alippi et al., 2004). 

 MBO REP1 primers: four band patterns can be found in 

Europe (B, b, β, Б) (Peters et al., 2006). 

 

3.3.2. Pulsed-field gel electrophoresis 

3.3.2.1. Preparation of genomic DNA agarose plugs 

1. Culture an isolate of P. larvae on an MYPGP agar plate for 48 h 

at 37°C. 

2. Suspend a loopful of bacteria (2-3 colonies from an isolated 

area on the plate) into 500 µl MYPGP broth and centrifuge for 

1 min at RT. 

3. Remove the broth, suspend the pellet with 1 ml washing 

buffer (see recipe below), and centrifuge for 1 min at RT. 

4. Remove the washing buffer. 

5. Completely suspend the bacterial cell pellet in 0.30 ml 

washing buffer + 0.05 ml Proteinase K (0.5 mg/ml). 

6. Warm the suspension to 50°C. 

7. Mix the suspension with an equal volume of melted 2% 

SeaKem Gold agarose (prepared in washing buffer; Cambrex 

Bio Science Rockland, Inc., ME) at 50°C.  

8. Quickly pipette into two wells of a plug mold (Bio-Rad 

Laboratories, Inc.) warmed to 37°C. 

9. Solidify the plugs at 4°C for 30 min. 

10. Remove the two plugs from the mold. 

11. Add plugs to 5 ml preheated Proteinase K Solution in a 50 ml 

plastic culture tube. 

12. Incubate overnight at 50°C with gentle agitation (shaker 

water bath). 

13. Preheat 10 ml H2O and 40 ml TE80 buffer (see recipe below) 

to 50°C. 

14. Wash plugs (use a sterile BioRad green screened caps; part 

#170-3711) with 10 ml 50°C H2O (add, swirl, and drain). 

15. Wash plugs with 10 ml 50°C TE80 buffer 4X (15 min for each 

wash with gentle shaking). 

16. Add 5 ml RT TE80 buffer to the plugs in the 50 ml culture 

tube and store at 4°C. Plugs are good for approximately 2 

months in TE80 buffer at 4oC. 

Wash Buffer (100 ml): 

 200 mM NaCl (4.0 ml of 5 M stock) 

 10 mM Tris-HCl (pH 7.5) (1.0 ml of 1 M stock) 

 100 mM EDTA (20.0 ml of 0.5 M stock) 

http://www.bio-rad.com/evportal/en/US/LSR/Solutions/LUSORPDFX/Pulsed-Field-Gel-Electrophoresis
http://www.bio-rad.com/evportal/en/US/LSR/Solutions/LUSORPDFX/Pulsed-Field-Gel-Electrophoresis
http://www.bio-rad.com/evportal/en/US/LSR/Solutions/LUSORPDFX/Pulsed-Field-Gel-Electrophoresis


Proteinase K Solution (100 ml): 

 50 mM EDTA (10.0 ml of 0.5 M stock) 

 1.0 g N-lauroylsarcosine 

 50 mg Proteinase K (final 0.5 mg/ml) 

 50 mg Lysozyme (final 0.5 mg/ml) 

 

TE80 Buffer (100ml): 

 10 mM Tris-HCl (pH 8.0) (1.0 ml of 1 M stock) 

 1 mM  EDTA (0.2 ml of 500 mM stock) 

 

3.3.2.2. Restriction enzyme digestion 

1. Aseptically remove a plug from the TE80 buffer and place 

onto the inner surface of a sterile petri dish. 

2. Using a plastic ruler under the petri dish, cut two 2 mm slices 

from the plug with a sterile razor blade. 

3. Place the two plug slices into 1 ml TE80 buffer in a 1.5 ml 

microcentrifuge tube. 

4. Wash the slices 2X with 1 ml TE80 buffer (30 min for each 

wash with gentle agitation). 

5. Quickly rinse the slices with 500 µl restriction digestion buffer 

(without restriction enzyme). 

6. Add 100 µl of XbaI Digestion Mixture  (see recipe below) and 

incubate 3 h at 37°C with gentle agitation. 

7. Remove digestion mixture solution. 

8. Rinse slices 2X with 1 ml 0.5X TBE Buffer (see recipe below). 

9. Suspend the plug slices in 1 ml 0.5X TBE Buffer. 

10. Store overnight at 4°C. 

 

XbaI Digestion Mixture (10 samples): 

 10X New England BioLabs Buffer 4 (100 µl) 

 100X BSA (10 µl) 

 XbaI enzyme (20 µl) New England BioLabs (20,000 U/ml) 

 H2O (870 µl) 

 

5X TBE Buffer (500 ml):   

 Tris Base (54 g) 

 Boric Acid (27.5 g) 

 0.5 M EDTA (pH 8.0) (20 ml) 

 H2O to 500 ml volume 

 

3.3.2.3. Gel loading and electrophoresis 
 

1. Make 2.3 litres of 0.5X TBE buffer (230 ml 5X TBE + 2070 ml 

H2O). 

2. Add 1.0 g Seakem Gold agarose to 100 ml 0.5X TBE Buffer. 

3. Carefully melt agarose in microwave oven. Save 5 ml (at 55°C) 

to seal the wells. 

4. Assemble the gel forming tray, assure that the tray is level 

with the well comb in place, and pour melted agarose into 

forming tray (cool melted agarose to 55-60°C before pouring). 
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5. Allow gel to solidify for a minimum of 30 min. 

6. Add remaining 2.2 litres of 0.5X TBE buffer to the CHEF 

electrophoresis box. 

7. Chill the buffer to 14°C by circulation through the chiller-pump 

unit. 

8. Adjust flow rate of buffer through the chiller-pump unit to 

between 0.75 and 1.0 l/min. 

9. Once gel has solidified and the comb is removed, remove a 

digested plug slice from the microcentrifuge tube. 

10. Place the slice onto inner surface of sterile Petri dish. 

11. Carefully slide the plug slice onto the side of a sterile razor 

blade using a sterile microspatula. 

12. Holding the razor blade (with the plug slice sticking to the 

side) at the edge of a well, carefully use the microspatula to 

slide the plug slice into the well. Use care not to introduce air 

bubbles in the well. 

13. Wash and flame sterilize the razor blade and microspatula for 

continued loading of wells with other prepared DNA plug 

slices. 

14. Add low range molecular size standards (4.9-120 kb) (Bio-Rad) 

to outer wells. 

15. Seal the wells with the saved SeaKem Gold agarose. Use care 

not to introduce any air bubbles during sealing and fill any 

wells that do not contain slices. 

16. Place the gel into the circulating pre-cooled buffer within the 

CHEF electrophoresis box. 

17. Allow the gel to cool for 15 min prior to beginning 

electrophoresis. 

18. Perform electrophoresis in the Bio-Rad CHEF DR III system 

using the following electrophoresis run parameters: 

 Switch angle: 120° 

 Switch time: 1-6 sec 

 Voltage:  6 V/cm 

 Temperature: 14°C 

 Run time: 16 hours 

19.  Following electrophoresis, remove and stain the gel in the 

dark with Sybr Green (Molecular Probes, Inc., Eugene, OR) 

(30 µl of 10,000X concentrate diluted into 300 ml TE pH 7.5) 

at RT for 45 min. 

20. Photodocument the gel via UV transillumination/epi-illumination 

(254 nm). 

 

3.4. In vitro sporulation of Paenibacillus larvae 

Paenibacillus larvae and Paenibacillus popilliae, “catalase-minus” 

paenibacilli as defined by the loop test (i.e. scraping growth from a 

slant or plate with an inoculating loop, placing into 3% H2O2, and 

examining for bubble formation), have the characteristic of 

sporulating efficiently in their insect hosts, but usually exhibit very 

poor sporulation when general in vitro growth conditions are used. 



For P. larvae, suppression of in vitro sporulation has been postulated 

to result from oxygen toxicity (Dingman and Stahly, 1984). Growth of 

strain NRRL B-3650 under limiting O2 improves sporulation in liquid 

culture. Also, nutrient availability at time of sporulation has been 

shown to influence spore production (Dingman and Stahly, 1983). 

Procedures promoting effective sporulation of P. larvae on solid, 

and in liquid, growth media have been developed (Dingman, 1983). 

By limiting colony number, many strains have been observed to 

sporulate well on MYPGP agar plates (see section 3.1. for recipe). 

However, Mueller-Hinton broth – one of its ingredients – was 

inhibitory to sporulation of strain NRRL B-3650 in liquid culture, 

rendering use of this growth medium in liquid form ineffective for 

sporulation. Development of a liquid growth medium (TMYGP; 1.5% 

Difco yeast extract; 0.4% glucose; 0.1% sodium pyruvate; 0.03M Tris

-maleate, pH 7.0; in distilled water) and conditions that aided 

sporulation of P. larvae  NRRL B-3650 has been reported (Dingman 

and Stahly, 1983). Unfortunately, other strains of this bacterium 

sporulated poorly, if at all, in this medium. However, Genersch et al. 

(2005) reported using the liquid part of Columbia sheep-blood agar 

slants for production of endospores from different P. larvae strains. 

Following are protocols using solid and liquid media growth conditions 

for in vitro sporulation of P. larvae. 

 

3.4.1. Sporulation on solid growth medium 

1. Create a 2-fold dilution series of the P. larvae bacterial culture 

being studied using MYPGP broth and spread each dilution 

onto several MYPGP agar plates (see section 3.1. for recipe). 

2. Incubate plates at 37°C for 6-7 days and select plates 

exhibiting 50 to 5,000 colonies per plate. Note: When high 

numbers of colonies are present on a plate, sporulation 

efficiency can decline. Also, maximum sporulation obtained in 

relation to the plate colony number will vary between bacterial 

strains. 

3. During the 6-7 days of incubation, microscopically monitor 

cellular growth and sporulation via single colony analysis. 

4. After incubation, remove spores from the surface of the agar 

medium by washing three times (5 ml sterile H2O per wash). 

5. Combine the three washes. Once H2O is added to a plate, use 

gentle rubbing of the agar surface with the sterile glass 

pipette to loosen spores from the surface. 

6. To produce a spore stock following removal of spores from a 

plate surface, concentrate the spore suspension via 

centrifugation (12,000 x g, 15 min, 4°C). 

7. Discard the supernatant. 

8. Suspend the resulting spore pellet in 30 ml cold sterile H2O. 

9. Perform alternate centrifugation and pellet suspension four 

times. 

10. Suspend the spore pellet in a final volume of 5 ml cold sterile 

H2O. 
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11. Store at 4°C. Note: Spores must be removed from the solid 

growth medium for preservation. When left on the agar plates 

for extended time, heat-resistant counts decline rapidly 

(Dingman, 1983). Also, long-term survival of washed spores 

that have been desiccated is not known. 

12. Obtain spore concentration by heating a portion of the spore 

stock at 65°C for 15 min. 

13. Perform serial-dilution plating onto MYPGP or T-HCl-YGP 

(Steinkraus and Morse, 1996) agar plates. 

14. Incubate inoculated plates 6-7 days at 37°C to determine 

colony counts (i.e., spore counts). Alternatively, determine 

spore number by direct microscopic counting. Note: The latter 

will give an overestimation. Heat resistant spore counts are 

usually about 6% of direct microscopic spore counts 

(Dingman and Stahly, 1983). 

 

3.4.2. Sporulation in liquid growth medium 

1. Inoculate TMYGP broth (6 ml in a 20 x 150 mm loosely 

capped screw-cap glass culture tube, see section 3.1. for 

recipe) with P. larvae NRRL B-3650. Note: Other bacterial 

strains must be tested separately because they may sporulate 

poorly in this medium and under these growth conditions. 

2. Incubate the culture at 37°C in a rotary incubator shaker 

adjusted to 195 rpm. The culture tube is held at a 45° angle 

in a wire test tube rack during incubation and aeration. 

3. Incubate for 3 to 4 days while microscopically monitoring 

cellular growth and sporulation. Other strains of P. larvae may 

require a longer incubation time for sporulation to occur. 

Alternatively, see Genersch et al. (2005) for sporulation of P. 

larvae in the liquid part of Columbia sheep-blood agar slants. 

4. Collect and concentrate spores via centrifugation. 

5. Wash the spores four times with 30 ml cold sterile H2O (as 

described in section 3.4.1.). 

6. Suspend the washed spores in a final volume of 5 ml cold H2O. 

7. Store at 4°C. 

8. Obtain spore counts (i.e. heat resistant counts) by serial-

dilution plating of the spore suspension onto MYPGP plates 

following heating of the suspension at 65°C for 15 min or 

determine counts by direct microscopic counting. 

Note: Heat resistant spore counts are usually about 6% of direct 

microscopic spore counts (Dingman and Stahly, 1983). 
 

 

 

3.5. Long term conservation of vegetative cells 

Experimental work using P. larvae requires a readily available source 

of this bacterium in culture. However, P. larvae quickly dies in culture 

and some means of preserving an isolate must be used. Although 

short-term preservation works (see section 3.5.1.), long-term 

conservation is required to maintain the genetic integrity of the 

original isolate. 



Production of frozen endospore stock suspensions is a very good 

procedure for long-term preservation. However, some isolates may 

not sporulate well in vitro and the slow rate of spore germination can 

hamper the start of experiments. Methods employing ultra-low 

freezing and lyophilization of vegetative cells (see sections 3.5.2. and 

3.5.3. below) are suitable for long-term storage of this microbe. 

Use of ultra-low freezing of P. larvae in glycerol has been routinely 

used and cultures exceeding five years of storage at -80°C remain 

viable (Douglas W  Dingman; personal observations). No known 

research regarding preservation of  P. larvae by lyophilization has 

been published. However, Haynes et al. (1961) developed a method 

to preserve P. popilliae by lyophilization and Gordon et al. (1973) 

imply that this method can be used for P. larvae. The protocol long 

used to preserve P. larvae strains at the National Center for Agricultural 

Utilization Research (USDA-ARS Culture Collection; NRRL) is similar to 

that described by Haynes et al. (1961) for P. popilliae. 

 

3.5.1. Short-term preservation 

1. Weekly transfer of an isolate onto fresh growth medium. 

2. Incubate for two days at 37°C. 

3. Store at 4°C. 

 

3.5.2. Preservation via ultra-low freezing 

1. Inoculate MYPGP broth (see section 3.1. for recipe) using a 

fresh culture of P. larvae. 

2. Grow overnight at 37°C with moderate aeration. 

3. Growth in the morning should show light to moderate 

turbidity. Note: Turbidity should not reach the point where the 

culture has become opaque. A light turbidity will place the 

culture in early to mid-exponential growth. Also, growth can 

be washed from the surface of a solid medium using fresh 

liquid medium. 

4. Examine the culture microscopically to gauge contamination 

while chilling the culture on ice (optional). 

5. Add an appropriate volume of a sterile solution of 100% 

glycerol to the culture to produce a bacterial suspension 

containing 20% glycerol (i.e. 0.25 ml of glycerol per 1.0 ml of 

culture). 

6. Aliquot 0.5 ml of the bacterial / glycerol suspension into 

cryovials. Snap-top microcentrifuge tubes also work, but may 

result in faster loss of viability during storage. 

7. Label and date the vials. 

8. (Optional) Quickly freeze the aliquots in an ethanol/dry ice 

bath. 

9. Place the bacterial suspensions in a pre-chilled storage box 

and store at -80°C. 

 

3.5.3. Preservation via lyophilization 

(J. Swezey, USDA-ARS Culture Collection (NRRL), Peoria , IL; personal 

communication) 
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To prepare lyophilization vials: 

1. Cut Pyrex glass tubing (6 mm diameter glass with 1 mm wall 

thickness) 15 cm long and seal one end by melting.  

2. Plug the open ends of the vials with cotton. 

3. Autoclave. Note: Ampules using rubber septa and aluminium 

sealing rings may be used as an alternative to the above three 

steps. However, use of these ampules increase costs and the 

vacuum may be lost over time. 

4. After 2-3 days incubation of the bacterium from an agar slant/

plate, wash with sterile bovine serum (e.g. Colorado Serum Co., 

Denver, CO). 

5. Place 0.1 ml aliquots of the cell/serum suspension into the 

sterilized vials, label, date.  

6. Attach the vials to a lyophilizer apparatus. 

7. Lower the vials into a solution of 50% ethylene glycol and 50% 

water (chilled to -50°C with dry ice) to freeze the cell 

suspensions. 

8. Turn on the lyophilizer vacuum pump. 

9. Evacuate for 3 hours while letting the temperature of the 

glycol/water bath gradually warm to -4°C. 

10. Lift the vials from the glycol/water bath. 

11. Allow the outer surfaces to dry for 1 hour at RT. 

12. Carefully cut the vials from the lyophilizer apparatus using a 

dual tip burner, running on natural gas and oxygen, to melt 

the upper portion of the glass vial while sealing the contents 

under vacuum. 

13. Store sealed vials refrigerated in the dark. 

 

3.6. Measuring susceptibility/resistance to 

antibiotics of Paenibacillus larvae 

In some countries, the antibiotic oxytetracycline (OTC) has been used 

by beekeepers for decades to prevent and control AFB in honey bee 

colonies as an alternative to the burning of infected beehives in areas 

where disease incidence is high. However, the intensive use of 

tetracyclines in professional beekeeping resulted in tetracycline-

resistant (TcR) and oxytetracycline-resistant (OTCR) P. larvae isolates. 

There is now general concern about widespread resistance involving 

horizontal-transfer via non-genomic (i.e. plasmid or conjugal 

transposon) routes and also induced resistance by the presence of 

sub-inhibitory concentrations of tetracycline (Alippi et al., 2007).  

P. larvae highly resistant phenotypes have been correlated with the 

presence of natural plasmids carrying different Tc resistance 

determinants, including tetK and tetL genes (Murray and Aronstein, 

2006; Alippi et al., 2007; Murray et al., 2007). 

Most Paenibacillus species, including P. larvae, are highly 

susceptible to tetracyclines; it has been reported that the growth of  

P. larvae strains is inhibited at concentrations as low as 0.012 µg of 

oxytetracycline per ml of culture medium. Alternatively, when a disc 

containing 5 µg of oxytetracycline is placed on an agar plate previously 

spread with a bacterial suspension, the clear zones formed by the 



sensitive strains usually average 50 mm in diameter including the disc 

(Shimanuki and Knox, 2000). Any reduction of the inhibition zone or 

an increase in the minimal inhibitory concentration (MIC) required to 

prevent the growth of P. larvae would be evidence of the development 

of resistant strains. 

 

3.6.1. Determination of minimal inhibitory concentrations (MICs)  

Microorganisms can be tested for their ability to produce visible 

growth on a series of agar plates (agar dilution), in tubes with broth 

(broth dilution), or in microplate wells of broth (broth microdilution) 

containing dilutions of an antimicrobial agent. Additionally, gradient 

MIC tests are also commercially available. MIC is defined as the 

lowest antibiotic concentration that prevents visible growth of 

bacteria. MIC methods are widely used in the comparative testing of 

new agents, or when a more accurate result is required for clinical 

management. As there are no CLSI (formerly NCCLS) (www.clsi.org) 

nor EUCAST (www.eucast.org)  recommendations for the 

determination of MICs of P. larvae, MIC values of tetracycline and 

other antibiotics can be determined by the agar dilution method using 

MYPGP as basal medium (see section 3.1. for recipe) as described as 

follows: 

1. Obtain antimicrobial powders directly from the manufacturer 

or from commercial sources. The agent must be supplied with 

a stated potency (mg or International Units per g powder, or 

as percentage potency). 

2. Store powders in sealed containers in the dark at 4°C with a 

desiccant unless otherwise recommended by the manufacturer. 

3. Prepare antibiotic stock solutions by using the following 

formula: 

Weight of powder (mg)  

=  Volume of solvent (ml)  X  Concentration (µg/ml) 

Potency of powder (µg /mg) 

 

4. It is recommended that concentrations of stock solutions 

should be 1,000 µg/ml or greater. In the case of tetracyclines, 

the tested concentrations can be achieved by using two stock 

solutions of 5,000 µg/ml and 1,000 µg tetracycline/ml in 

ethanol, stored at -20°C in darkness until used. 

5. Prepare MYPGP agar flasks and maintain them at 45°C until 

the antibiotic solutions are incorporated. 

6. Pour 25 ml of culture medium onto each Petri dish of 90 mm 

in diameter to give a level depth of 4 mm ± 0.5 mm. If using 

150 mm diameter Petri dishes, 70 ml of culture medium 

should be dispensed.  

7. Prepare plates with increasing concentrations of tetracycline 

i.e.: 0.03, 0.06, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, and 

128 µg/ml. For the controls, MYPGP agar without antibiotic is 

used. 

8. Allow the plates to set at RT before moving them. 
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9. Dry the plates in a sterile laminar flow cabinet so that no 

drops of moisture remain on the surface of the agar; do not 

over-dry plates. 

10. Incubate each P. larvae strain to be tested on MYPGP agar for 

48 h at 36°C to obtain mainly vegetative cells. 

11. Adjust the bacterial suspension until the OD620 (density of a 

culture determined spectrophotometrically by measuring its 

optical density at 620 nm)  is about 0.4.   

12. Each bacterial suspension of each strain must be inoculated 

onto the surface of the culture medium by adding drops of 5 µl 

each by means of an automatic micropipette (usually 15-20 

drops per plate). 

 It is possible to test different strains on the same plate. This 

procedure must be repeated at least twice for each strain and 

tetracycline concentration, and control plates without 

antibiotic must be used. It is strongly recommended to include 

control strains with known MICs in each batch. 

13. Place the plates open into a sterile laminar flow cabinet until 

the drops are absorbed. 

14. Incubate the plates in inverted position at 36°C ± 1 for 48 h. 

15. After incubation, ensure that each tested strain has grown on 

the antibiotic-free plate control. 

16. Read the MIC endpoint for each strain as the lowest 

concentration of antibiotic at which there is no visible growth. 

The growth of one or two colonies or a fine film of growth 

should be disregarded. 

Interpretation: for tetracyclines, P. larvae isolates should be 

considered as ”susceptible” when there MICs are <4 µg/ml, 

”intermediate” for MICs  between 4-8 µg/ml and ”resistant”’ for MICs 

≥16. Examples of acceptable MIC values  for control strains are: 

Pseudomonas aeruginosa (ATCC 27853): between 16-32 µg/ml 

(resistant); Escherichia coli (ATCC 25922): between 0.5-2 µg/ml 

(susceptible); Staphylococcus aureus (ATCC 29213): between 0.12-1 

µg/ml (susceptible) and Enterococcus faecalis (ATCC 29212): between 

16-32 µg/ml (resistant). 

When examining a population of bacteria, it is suggested to calculate 

their values of MIC50 and MIC90 (minimum concentration necessary to 

inhibit the growth of 50 and 90% of microorganisms tested respectively). 

 

3.6.2. Determination of antibiotic susceptibility testing by the 

disc diffusion method 

The disc diffusion method of antibiotic susceptibility testing is the most 

practical method for determining antibiotic susceptibility/resistance of 

microorganisms to different antimicrobial agents. The accuracy and 

reproducibility of this test are dependent on maintaining standard 

procedures. As there are no CLSI (formerly NCCLS) (www.clsi.org) nor 

EUCAST (www.eucast.org) recommendations for the determination of 

susceptibility/resistance of P. larvae by the disc diffusion method, a 

method developed for this species is described below. 



For determining tetracycline resistance, the agar diffusion procedure 

can be employed, using MYPGP agar (see section 3.1. for recipe) and 

5 µg tetracycline discs (Oxoid® or BBL®). The discs can also be 

prepared in the laboratory by using S & S® or similar sterile discs (6 mm 

in diameter) impregnated with 5 µg tetracycline per disc. 

 

3.6.2.1. Preparation of discs 

1. Prepare a stock ethanol solution containing 500 µg/ml of 

tetracycline as explained in section 3.6.1. 

2. Pipette 10 µl of the stock solution onto each sterile disc. 

3. Dry the discs in a sterile laminar flow cabinet. 

4. Store in sterile containers at -20°C in darkness until used. 

Note: Other tetracyclines (e.g., oxytetracycline) can be tested in 

the same way. Discs containing antibiotics other than tetracyclines 

should be prepared at the concentrations suggested by CLSI or EUCAST. 

 

3.6.2.2. Preparation of plates 

1. Dispense MYPGP-agar cooled below 50°C into sterile Petri 

dishes to give a level depth of 4 mm ± 0.5 mm (25 ml in 90 mm 

diameter Petri dish, 70 ml in 150 mm diameter Petri dish). 

2. Allow the agar to set before moving the plates. 

3. Prepared plates can be stored at 4-8°C in sealed plastic no 

more than 7 days before using. 

 The surface of the agar should be dry before use. 

4. No drops of water should be visible on the surface of the agar 

when the plates are used. Plates must not be over-dried. 

 

3.6.2.3. Determination of resistance/susceptibility 

1. Incubate vegetative cells of each P. larvae strain to be tested 

on MYPGP agar for 48 h at 36°C ± 1. 

2. Suspend the cells directly from MYPGP in screw capped tubes 

containing sterile distilled water or sterile saline. 

3. Adjust the bacterial suspension until the OD620 is in the range 

of 0.4. Alternatively, individual colonies of each strain can be 

incubated at 36°C ± 1 in 2 ml aliquots of MYPGP broth for 26 

to 75 h until the OD is in the range of 0.5. Optimally, use the 

adjusted suspension within 15 min of preparation and always 

within 60 min. 

4. Vortex for 3 minutes. 

5. Dip a sterile cotton swab in the bacterial suspension and 

remove excess fluid on the swab by turning it against the 

inside of the tube. 

6. Spread the inoculum evenly over the entire surface of the 

plate prepared in 3.6.2.2. by inoculating in three directions. 

7. Place antibiotic discs (pre-warmed to RT) on the plate. 

 Discs should be in firm, even contact with the surface of the 

medium. At least three replications for each bacterial strain is 

recommended. It is possible to apply more than one disc per 
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plate; in this case, discs should be spaced so that zones of 

inhibition in susceptible isolates do not overlap. Overlapping 

will impede the measurement of zone diameters. 

8. Apply the “15-15-15 rule”: Use the inoculum within 15 min of 

preparation and never beyond 60 min. Apply discs within 15 

min of inoculating plates. Start incubation within 15 min of 

application of discs. 

9. Incubate the plates inverted at 36°C ± 1 during 72 h. 

10. Measure the resulting inhibition zone (clear area without 

bacterial growth including the disc) by using a calliper or an 

automated zone reading. Read the plates from the back 

against a black background illuminated with reflected light. 

11. A correct inoculum and satisfactorily spread plates will result 

in a confluent lawn of growth in the absence of antibiotic. It is 

important that there is an even lawn of growth to achieve 

uniformly circular inhibition zones. If individual colonies can be 

seen, the inoculum is too light and the test must be repeated. 

In case of distinct colonies within zones, subculture the 

colonies, check purity and repeat the test if necessary. 

Interpretation: for tetracyclines, an inhibition zone of less than 20 

mm in diameter (including the disc) is considered as the separation 

point between resistant and susceptible strains as follows:  ”resistant” 

≤ 14 mm; ”intermediate”:  between 15-19 mm and ”susceptible”: ≥20 

mm (Alippi et al., 2007). 

It is strongly recommended to use reference standard strains 

according to the indications of NCCLS or EUCAST with the only 

difference that MYPGP agar (see section 3.1. for recipe) should be 

used as basal medium. 

 

 

4. Experimental infection 

4.1. Infection of in vitro reared larvae for the 

analysis of virulence and pathomechanisms 

of Paenibacillus larvae 
Exposure bioassays (Genersch et al., 2005) are a reliable approach to 

determine virulence of different P. larvae strains in the laboratory. 

Briefly, this experiment consists in: 

1. Rear first-instar larvae from various colonies in 24-well plates, 

with 10 larvae per well. 

2. Provide larvae with larval food mixed with a determined 

quantity of infectious spores during the first 24 hours. 

Afterwards, larvae will receive normal food every day for the 

rest of the experiment. A control group receives normal larval 

diet throughout. 

3. Each day dead larvae are recorded and examined for AFB 

infection. 



 

Spore preparations for experimental infection can be performed as 

described under section 3.4. or as described below (Genersch et al., 

2005): 

1. Resuspend around 100 P. larvae colonies in 300 µl of brain 

heart infusion broth (BHI).  

2. Inoculate on Columbia sheep blood agar (CSA) slants. 

3. Incubate slants containing bacterial suspension at 37°C for 10 

days or until sporulation has occurred. 

4. Collect medium containing spores. 

5. Calculate spore concentration in the medium in colony 

forming units after plating different dilutions of the collected 

medium. 

6. Count colonies after 6 days of incubation. 

 

4.1.1. Protocol for exposure bioassays 

1. For grafting of larvae, dispense 300 µl of larval feed per well 

in a 24-well plate. Leave 6 wells empty (A1, A3, A5, D2, D4 

and D6) and fill them with 500 µl of double distilled water to 

avoid desiccation. 

2. Incubate plates 30 min at 35°C to warm them up. 

3. Graft the larvae by inserting a grafting tool under the back of 

the larvae floating in royal jelly without touching it, and 

carefully deposit it on the surface of the larval feed prepared 

in the well plate. Deposit ten larvae per well. Note: Graft only 

L1 instar larvae, under 12 hours of age from hatching. 

Collecting larvae from as many different populations as 

possible will ensure randomization, achieve homogenous 

treatment groups, and avoid population-specific variations. 

4. For starting the experimental phase, aliquot larval feed and 

add the necessary volume of spore suspension, which needs 

to contain a defined concentration of spores to adjust a defined 

final spore concentration in the larval feed, e.g., to the desired 

lethal concentration (LC) for the infection group (Table 4). 

5. Dispense 300 µl per well of the spore-contaminated larval diet 

in 3 different wells. Leave 3 wells for the control group 

receiving non-spore contaminated larval diet during the entire 

experiment. 

6. Set ten larvae per well. 

7. Incubate plates at 35°C for 24 hours. 

8. Groups of 30 larvae (in 3 wells) are treated as one replicate 

and at least three independent replicates should be performed 

for statistical analysis (see the BEEBOOK paper on statistics

(Pirk et al., 2013)). 
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9. After 24 hours of infection, transfer larvae to a pre-warmed, 

fresh normal larval diet plate.  

 Use a different grafting tool for each treatment group to avoid 

reinfection. Thereafter, every treatment group receives fresh 

larval diet every 24 hours. 

10. Analyze the plates each day under a stereo microscope to 

determine the health status of the larvae. 

11. Transfer remaining (living) larvae to a new plate containing 

pre-warmed fresh larval diet. 

12. Proceed with experiment until day 14. 

 Since larvae increase in size during the experiment, the 

number of larvae per well must be decreased accordingly. 

13. After defecation (at day 7-8, when light yellow secretion can 

be observed surrounding the larvae), transfer larvae to 

pupation plates. Prepare pupation plates by lining every well 

with laboratory tissues, leaving 6 wells free for double distilled 

water. 

14. Larvae are classified as dead when they stop breathing 

(movement of tracheal openings stops) and lose body 

elasticity. The number of dead larvae should be reported 

every day. 

15. To determine whether P. larvae infection caused the death of 

a larva, dead larvae are plated out on Columbia sheep blood 

agar (CSA) plates. Plates are incubated overnight at 37°C to 

allow the growth of vegetative bacteria only (spores need 

about 3 days to germinate under these conditions). Positive 

AFB infection will be confirmed by growth of P. larvae (see 

section 3.2.). 

16. Further confirmation is provided by performing P. larvae-

specific PCR-analysis of colonies grown from larval remains. 

16.1. Pick one colony. 

16.2. Dissolve it in 25 µl of double distilled water. 

16.3. Boil at 95° for 10 minutes. 

16.4. Centrifuge for 10 minutes at 9,500 rcf. 

16.5. Supernatant can be used as template for PCR (see 

section 3.2.2.). 

 

4.1.2. Analysis of generated data 

In order to evaluate compiled experimental data, two different 

analyses to measure virulence can be performed. The first virulence 

indicator is the lethal concentration (LC) value (Thomas and Elkinton, 

2004), which indicates the spore concentration at which 50% (LC50) 

or 100% (LC100) of the individuals are killed. To calculate this 

measure, the proportion of dead larvae from the number of exposed 

larvae is plotted against spore concentration. From such graphs, one 

can to estimate the spore concentration needed to kill a given 

proportion of the exposed population. These graphs also allow to 

deduce - for a certain analysed strain - the approximate spore 

concentration present when a specific percentage of the exposed 

population is dead. 

Table 4. Estimated LC50 and LT100 values (min-max) for ERIC I and 

ERIC II. (Genersch et al., 2005). 

Genotype LC50 (CFU ml-1 larval diet) LT100 (days p.i.) 

ERIC I  <<100-800 7-10 

ERIC II  <<100-620 10-138.9 



Another measure of virulence is the lethal time (LT) (Thomas and 

Elkinton, 2004) which is the time it takes the pathogen to kill 50% 

(LT50) or 100% (LT100) of the infected animals. In order to obtain this 

measure, the time course of infection must be determined. 

Cumulative mortality per day is calculated as percentage of all 

individuals which died from P. larvae infection during the course of 

the experiment (total number of P. larvae-killed animals until the end 

of the experiment). Average values are calculated every day from at 

least three independent replicates, and plotted against every time 

point (day post-infection). 

 

4.2. Experimental infection of a bee colony 

Colony assays of AFB prevalence can be used to determine the 

efficacies of antibiotics and other treatments as well as the resistance 

traits of specific colonies. 

 

4.2.1. Inoculation with known spore concentration solution 

Below is one protocol for a field evaluation of AFB prevalence, derived 

from Evans and Pettis (2005): 

1. Establish clean colonies of equal strength by placing 1.2 kg of 

worker bees and a marked queen (from resistant or 

susceptible stock, if desired) into a standard (e.g. Langstroth) 

hive body. 

2. Following establishment and the initiation of brood rearing 

(ca. 1 month), inoculate each colony twice (2-4 weeks apart) 

with spores from a fresh field isolate of P. larvae. 

3. Inoculate by spraying approximately 2,000 immature bees 

(eggs, embryos, and first-and second-instar larvae) with a 

sucrose-water (1:10 weight/volume) suspension containing 

ca. 200 million P. larvae spores. 

 Sufficient inoculant for > 50 colonies is prepared by 

macerating and suspending ca. 100 scales (dried larval 

remains) collected from symptomatic colonies. 

4. Spray inoculation is effective at initiating AFB infection in 

colonies, with ca. 50% of managed colonies exhibiting AFB 

disease one month following a single inoculation, and nearly 

all of susceptible colonies showing symptoms by three weeks 

after the second inoculation. 

 

4.2.2. Inoculation with diseased brood 

If it is not important to inoculate colonies with a known quantity of 

spores (e.g. if the goal of the experiment is simply to induce clinical 

symptoms of AFB), a comb section (15 cm x 15 cm) can be cut from 

frames containing infective AFB scales (dried spores). At least 50% of 

the cells should contain scale. Introduce the comb sections with AFB 

scale into the middle frame in each colony. 
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4.3. Measuring colony resistance to AFB 

4.3.1. Surveying inoculated colonies 

1. Inspect colonies every two weeks to assess disease levels and 

colony growth, and to ensure that all colonies were 

successfully inoculated. 

2. Approximately 90 days after colony establishment, colony 

growth can be measured by removing individual frames and 

estimating the area of sealed immature brood (see the 

BEEBOOK paper on methods for estimating strength 

parameters (Delaplane et al., (2013)). Simultaneously, the 

level of foulbrood disease can be determined by making a 

visual inspection of all brood (immature larval and pupal 

honey bees) for evidence of infection. Severity of AFB 

infection can be quantified using a modification of a standard 

scoring method (Hitchcock et al., 1970). Each frame with 

brood is rated on a 0-3 scale as to AFB infection: 

 0 = no visible signs of disease 

 1 = less than 10 cells/frame with visible AFB 

 2 = 11-100 cells with AFB 

 3 = greater than 100 cells with AFB 

 A composite disease score is then generated by summing 

across all frames for each colony. 

3. An overall severity score for each colony on each inspection 

date can be obtained by calculating the mean (± s.d.) of the 

individual frame scores. An overall score of 1 corresponds to a 

colony with only slight clinical symptoms, possibly not noted 

by cursory inspection. An overall score of 2 would indicate 

noticeable symptoms, and a score of 3 corresponds to a 

highly symptomatic colony. 

 

4.3.2. Colony resistance 

It is important to test the viability of the AFB spores used to challenge 

the colony. A lack of clinical symptoms after challenge may be due to 

colony resistance (Spivak and Reuter, 2001) or the use of non-viable 

spores. 

 An indirect way to test for colony resistance to AFB is to assay 

the colony for hygienic behaviour using the 24 h freeze-killed 

brood test, as outlined in the BEEBOOK paper on queen 

rearing and selection (Büchler et al., 2013). Colonies that 

remove > 95% of the freeze-killed brood within 24 hours, 

over two repeated tests, are likely to demonstrate resistance 

to AFB. 

 It has not been established whether colonies that remove > 95% 

of pin-killed brood (another assay for hygienic behaviour) are 

also likely to be resistant to AFB. This needs to be tested. 

 

 



5. ‘omics and other sophisticated 

techniques 
5.1. Paenibacillus larvae gene expression 

P. larvae gene expression under different experimental conditions can 

be investigated at the transcriptional level by making use of 

quantitative reverse transcriptase polymerase chain reactions (qRT-PCR). 

The state-of-the-art-analysis of qRT-PCR data relies on normalized 

and calibrated relative quantities (Vandesompele et al., 2002; 

Hellemans et al., 2007). In order to normalize the qRT-PCR data on 

target genes, normalization factors (NFs), based on the geometric 

mean of converted threshold cycle values (Ct-values), need to be 

calculated for each sample. Before calculating NFs, one has to decide 

how many reference genes should be included in this calculation. This 

decision is based on the expression stability of candidate reference 

genes under all examined experimental conditions. Therefore, the 

protocol below describes how to select reference genes for P. larvae. 

 

5.1.1. Reference gene selection 

5.1.1.1. Sample collection and storage 

1. Grow at least ten independent P. larvae cultures for each 

condition to be analysed with qRT-PCR. 

2. Centrifuge cultures for 5 min at 8,000 x g and 4°C. 

3. Pour off the supernatant. 

4. Resuspend the bacterial pellet in RNAlater solution (Ambion). 

5. Incubate for approximately half an hour on ice. 

6. Divide the suspension in aliquots. 

7. Centrifuge aliquots for 2 min at 8,000 x g and 4°C. 

8. Store at -80°C. 

 

5.1.1.2. RNA and cDNA preparation 

1. Centrifuge thawed aliquots for 2 min at 6,500 x g and 4°C. 

2. Resuspend bacterial pellets in TE buffer with Lysozyme (15 

mg/ml) and Proteinase K (Qiagen). 

3. Vortex for 10 sec. 

4. Incubate 10 min at RT with constant shaking. 

5. Isolate RNA with RNeasy Plus Mini Kit and protocol 

“Purification of Total RNA for Animal Cells” (with on-column 

DNase I treatment). 

6. Elute RNA with 30 µl RNase-free water. 

7. Store at -80°C. 

8. Convert RNA to cDNA with RevertAid First Strand cDNA 

Synthesis Kit (Fermentas), using random hexamer primers. 

 

5.1.1.3. Primer design and secondary structures 

 Design primers (80 – 150 bp) with Primer3Plus (Untergasser 

et al., 2007). 

 Evaluate secondary structures of amplicon with MFold (Zuker, 

2003) for 60°C, 50 mM Na+ and 3 mM Mg2+. Selected 

candidate reference genes for P. larvae are listed in Table 5. 
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5.1.1.4. qRT-PCR reactions 

For a single reaction, assemble the following components (total 

volume: 15 µl/reaction): 

 7.5 µl 2x Platinum SYBR Green qPCR SuperMix-UDG 

(Invitrogen) 

 0.03 µl of 100 µM forward and reverse primer each 

 1.0 µl cDNA template 

 6.5 µl distilled water 

 

5.1.1.5. qRT-PCR program 

Set program as follows: 

 50°C, 2 min, 1 cycle 

 95°C, 2 min, 1 cycle 

 [95°C, 20 sec; 60°C, 40 sec] 40 cycles 

After PCR amplification, perform a melt curve analysis by 

measuring fluorescence after each temperature increase of 0.5°C for 

5 sec over a range from 65°C to 95°C. 

 

5.1.1.6. qRT-PCR analysis 

Analyze the reference gene stability with geNormPLUS within qBasePLUS 

(Vandesompele et al., 2002; Hellemans et al., 2007) using target-

specific amplification efficiencies. 

 

5.1.2. Differential gene expression 

Sample collection and storage (except for the recommendation of ten 

cultures), RNA and cDNA synthesis, in silico primer design and 

secondary structure evaluation, and qPCR experimental procedures 

(reactions, program and analysis, except for geNormPLUS analysis) 

are essentially the same for the study of differential gene expression 

by qRT-PCR as described in section 5.1.1. for reference gene 

selection. 

 

5.2. Comparative genome analysis within the 

species Paenibacillus larvae using suppression 

subtractive hybridization 

Suppression subtractive hybridization (SSH) is a powerful tool for 

elucidating genomic sequence differences among closely related 

bacteria. SSH is a PCR-based DNA subtraction method which was 

originally developed for generating differentially regulated or tissue-

specific cDNA probes and libraries (Diatchenko et al., 1996). However, 

it has also been successfully adapted for bacteria, especially for the 

identification of genes that contribute to the virulence of bacterial 

organisms (Akopyants et al., 1998). For example, SSH has been 

successfully employed to compare genomes of pathogenic and non-

pathogenic (Janke et al., 2001; Reckseidler et al., 2001) or virulent 

and avirulent strains of bacterial pathogens (Zhang et al., 2000). SSH 

has also led to the identification of pathogenicity islands (Hacker et al., 

1997) in infectious bacteria (Agron et al., 2002). Recently, SSH 

analysis of all four genotypes of P. larvae led to the identification of 

putative virulence factors like potent antibiotics belonging to the class  



 

of non-ribosomal peptides and polyketides as well as several toxins 

and cytolysins (Fünfhaus et al., 2009). 

The principle of any SSH analysis is that one genome putatively 

containing additional genes (the so-called ‘driver’) is subtracted from 

the other genome (‘tester’) with the result that  the additional 

sequences specific to the tester remain and can be visualized via PCR. 

For SSH analysis, genomic DNA of P. larvae grown in liquid culture of 

brain heart infusion broth (BHI broth, see section 3.1. for recipe) is 

used. Since the quality of the genomic DNA is of crucial importance, 

special kits for DNA extraction of Gram-positive bacteria (e.g. 

MasterPure Gram Positive DNA Purification Kit, Epicentre 

Biotechnologies) to isolate P. larvae DNA are recommended. The 

following protocol for SSH is based on the protocols published by 

Akopyants et al. (1998) using the PCR-Select Bacterial Genome 

Subtraction Kit (BD Clontech). SSH consists of two consecutive 

phases, the hybridization and the amplification. Within the phase of 

hybridization, the genomic DNA extracted from the ‘driver’ strain is 

hybridized with DNA extracted from the ‘tester’ strain. Sequences that 

are present in the tester strain but missing in the driver strain are 

then isolated in the amplification phase in which target genomic DNA 

fragments are amplified, while  amplification of non-target DNA is 

simultaneously suppressed using the suppression PCR effect (Siebert 

et al., 1995). 

The protocol for the comparison of P. larvae genotypes involves 

the following steps: 

1. Following the manufacturer’s protocol, digest the isolated DNA 

from both genomes using restriction enzyme RsaI, which has  
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 a recognition sequence of only four bases. 

 Since this sequence occurs often in the genome of P. larvae, a 

high fragmentation of the bacterial DNA (100 to 1000 bp) with 

blunt ends is achieved. 

2. After purification of the fragmented DNA with the MinElute 

Cleanup Kit (QIAGEN) according to the manufacturer’s 

protocol, divide the DNA of the tester strain into two pools 

which are ligated with either Adaptor 1 (5’–

CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAGGT-

3’) or Adaptor 2R (5’–

CTAATACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAGGT-3’), 

catalysed by T4 DNA ligase. 

 The ends of the adaptors lack a phosphate group, so only one 

strand of each can be ligated to the 5’ end of the tester DNAs. 

3. For the first round of hybridization, mix each pool of adaptor-

ligated tester-fragments with a 50-100-fold excess of driver-

fragments. 

4. Incubate the mixed samples at 98°C for 90 sec. 

(denaturation). 

5. Incubate at 65°C for 90 min (annealing). 

6. In the second round of hybridization, mix both pools without 

denaturation. 

7. Incubate overnight at 65°C to allow free tester-fragments 

from both pools to form heterohybrids (hybridization of 

complementary tester DNAs with different adaptors 

(Akopyants et al., 1998)). 

8. Add freshly denatured driver to the mixture. 

Table 5. Reference genes for P. larvae. 

Name Sequence Predicted gene product 

AFB_rpoD_fw 

AFB_rpoD_rv  

5'-AACTTGCCAAACGGATTGAG-3' 

5'-AAGCCCCATGTTACCTTCCT-3' 
RNA polymerase sigma factor RpoD 

AFB_gyrA_fw 

AFB_gyrA_rv  

5'-ATGCGGTCATCCCTATTGAG-3' 

5'-GGTCATCTTCCCGCAAATTA-3' 
DNA gyrase subunit A 

AFB_cmk_fw 

AFB_cmk_rv  

5'-GTACAGGGCGATTACCTGGA-3' 

5'-GCCATCAACGAATACCTGCT-3' 
Cytidylate kinase 

AFB_sucB_fw 

AFB_sucB_rv  

5'-ATTGCCAAGGGTGTTGTAGC-3' 

5'-TTCAGCCCGGATTCATTTAG-3' 
Succinyl-CoA synthetase subunit β 

AFB_eftu_fw 

AFB_eftu_rv  

5'-TAACATCGGTGCCCTTCTTC-3' 

5'-CCACCCTCTTCGCTAGTCAG-3' 
Elongation factor Tu 

AFB_fum _fw 

AFB_fum _rv  

5'-CCAAAATATGCGGAGCTGAT-3' 

5'-GTGAACCGCAATTTCCCTTA-3' 
Fumarate hydratase 

AFB_purH_fw 

AFB_purH_rv 

5'-TTCTCTCGGGGCTTTTGATA-3' 

5'-CTACTGTTGGCTCACGGTCA-3' 

Bifunctional phosphoribosyl aminoimidazole  

carboxamide formyltransferase / IMP cyclohydrolase  

AFB_adk_fw 

AFB_adk_rv  

5'-TCAACAGGTGATGCTTTTCG-3' 

5'-TGTGATTTCGTCAGGAACCA-3' 
Adenylate kinase 

AFB_gapdh_fw 

AFB_gapdh_rv  

5'-TGTTGAAGCTGGTGAAGGTG-3' 

5'-TCCGCTTTTTCTTTTGCAGT-3' 
Glyceraldehyde-3-phosphate dehydrogenase 



9. Allow the samples to hybridize. 

 During this step, hybrid molecules are formed, but only DNA 

fragments which are exclusively present in the sample of the 

tester strain are amplified in the subsequent amplification 

phase. 

10. For amplification, perform a nested PCR with adaptor specific 

primers. 

 For the first PCR, the primer 1 (5'-

CTAATACGACTCACTATAGGGC-3') is used. For the second PCR, 

the nested primer 1 (5'-TCGAGCGGCCGCCCGGGCAGGT-3') 

and the nested primer 2R (5'-AGCGTGGTCGCGGCCGAGGT-3') 

are used. 

11. To obtain a library of tester-specific sequences, secondary 

PCR products - i.e., clone tester specific DNA fragments - are 

then cloned into appropriate vectors (e.g. pCR2.1TOPO 

vector, Invitrogen, containing an ampR gene). 

12. Transform into competent E. coli (e.g. TOP10 cells, 

Invitrogen) following the manufacturer’s instructions. 

13. Plate transformation mixes on agar plates supplemented with 

Ampicillin (100 µg/ml) 

14. Incubate overnight at 37°C. 

15. Pick and grow clones individually overnight in Luria broth in 

the presence of Ampicillin (100 µg ml/ml) at 37°C and 300 

rpm. 

16. Extract plasmid DNA from these overnight cultures (e.g. by 

using the Qiagen plasmid mini kit). 

17. The presence of inserted P. larvae DNA can be verified by 

restriction digestion. In the case of pCR2.1TOPO, perform 

digestion with EcoRI. 

18. Sequence detected inserts from positive clones using 

appropriate primers. 

 For pCR2.1TOPO, use primers M13 uni (-21)         

5’-TGTAAAACGACGGCCAGT-3’ and M13 rev (-29) 

CAGGAAACAGCTATGACC. 

19. To verify the specificity of the DNA fragments for the tester 

strain, perform a PCR with fragment specific PCR primers on 

DNA from the tester strain and related P. larvae strains (i.e., 

representatives of the same genotype). 

 In each subtraction, all controls recommended by the 

manufacturer must be performed and all must test positive. Analysis 

of the tester-specific sequences is performed with BLASTx (Altschul et al., 

1990, 1997) followed by functional annotation based on the COG 

(cluster of orthologous groups) classification (Tatusov et al., 1997, 

2003). 

 

5.3. Conventional proteomics using two-

dimensional gel electrophoresis 

Genomic sequences are not sufficient for explaining biological 

functions because there is no strict linear correlation between the 

genome and the proteome of an organism. For example, protein 

modifications and relative concentration of proteins cannot be 

determined by genomic analysis (Pandey and Mann, 2000). 

Furthermore, the DNA sequences give no information about conditions 

and time for translation as well as effects of up or down regulation of 

gene expression (Humphery-Smith et al., 1997). Therefore, 

predictions on the basis of genetic information should be completed 

by expression data at the level of the transcriptome and the 

proteome. By means of proteome analysis, a holistic approach of 

protein expression under specific conditions is possible. The classical 

method of proteomics is the two-dimensional (2D) gel electrophoresis 

(O’Farrell, 1975; Klose, 1975). Recently, it was successfully used for a 

comparison of the P. larvae genotypes ERIC I and II (Fünfhaus and 

Genersch, 2012). 

Sample preparation for 2D electrophoresis uses the following 

protocol (Fünfhaus and Genersch, 2012): 

1. Cultivate P. larvae strains to be analysed on Columbia sheep 

blood agar (CSA; see section 3.1. for recipe) plates for three 

days at 37°C. 

2. To obtain a pre-culture, inoculate 3 ml brain heart infusion 

broth (BHI, see section 3.1 for recipe) with one bacterial 

colony and the cells are grown overnight at 37°C with shaking 

at 200 x g. 

3. To obtain a 10 ml main culture, inoculate 9 ml BHI with a pre-

culture to achieve a final OD600 of 0.01 after adjustment to a 

final volume of 10 ml with BHI. 

4. Incubate at 37°C with shaking at 200 x g. 

5. Monitor growth continuously by measuring OD600. 

6. Stop growth in the late exponential phase (OD600 0.65) by 

harvesting the cells via centrifugation (20 min, 5,000 x g, 4°C). 

7. Wash the bacterial cell pellets three times with ice-cold PBS. 

8. Resuspended in 1 ml lysis buffer (7 M urea, 2M thiourea, 4% 

(w/v) CHAPS, complete protease inhibitor cocktail (Roche)). 

9. Disrupt  cells by using a sonicator, e.g. ranson Sonifier 250 

(duty control: 10%; output control: 1). Repeated sonication 

cycles (ten times for 30 sec) are interrupted by cooling phases 

for 60 sec. 

10. Incubate samples for 1 h at RT to facilitate dissolving the 

proteins. 

11. Separate crude protein extracts from cellular debris by 

centrifugation at 16,100 x g for 25 min at 4°C. 

 The resulting supernatant contains the cytosolic proteins but 

also salts and other small charged molecules which need to 

be removed from the solution by precipitation. 

12. Precipitate the cytosolic proteins of P. larvae with one volume 

20% TCA, 2% Triton X-100 overnight at 4°C. 

13. Pellet the precipitated proteins by centrifugation (16,100 x g, 

25 min, 4°C). 

14. Wash the pellets with 80% acetone to remove residual TCA. 
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15. Resuspend the washed pellet in 200 µl sample buffer (7 M urea, 

2M thiourea, 4% (w/v) CHAPS, 100 mM DTT, 1% Bio-Lyte 

Ampholyte (Bio-Rad), complete protease inhibitor cocktail 

(Roche)). 

16. Vortex for 1 h at RT. 

17. Separate the insoluble material from the soluble proteins by 

centrifugation (15,000 x g, 1 h, 15°C) to obtain the soluble 

cytoplasmic fraction. 

18. Determine the protein concentration by performing the 

Pierce® 660 nm Protein Assay (Thermo Scientific) according to 

the manufacturer’s protocol. 

19. Store samples at -80°C until further analysis. 

 These protein samples are then subjected to 2D-gel 

 electrophoresis with the isoelectric focussing (IEF) as the first 

 dimension followed by SDS-PAGE analysis as second dimension.  

20. Dilute the samples with rehydration buffer (7 M urea, 2 M 

thiourea, 1% (w/v) CHAPS, 10 mM DTT, 0.25% Bio-Lyte 

Ampholyte (Bio-Rad)). 

21. Determine the amount of protein to load on IPG strip 

according to the sample, the pH range, the length of the IPG 

strip and the staining method. 

22. Focussing of proteins is best performed in commercially 

available, immobilized pH gradient strips (IPG strips) selecting 

a suitable pH gradient. For the analysis of P. larvae proteins 

IPG strips with a pH gradient 5-8 and a length of 7 cm (Bio-Rad) 

proved to be useful. 

23. Load 60 µg cytosolic P. larvae proteins in a total rehydration 

volume of 125 µl on the IPG strips. 

The following protocol for IEF is adapted to the PROTEAN IEF Cell 

(Bio-Rad) at 20°C: 

24. Load the samples on the IPG strips by an active in-gel 

rehydration for 18 h at 50 V followed by a voltage profile with 

increasing values: 

 linear increase from 50 – 200 V for 1 min. 

 200 V for 200 Vh. 

 linear increase from 200 – 500 V for 1 min. 

 500 V for 500 Vh. 

 linear increase from 500 – 1000 V for 1 min. 

 1000 V for 1000 Vh. 

 linear increase from 1000 – 2000 V for 1 min. 

 2000 V for 2000 Vh. 

 linear increase from 2000 – 4000 V for 1 min. 

 4000 V for 4500 Vh. 

25. Subsequently, saturate the proteins separated in the IEF gel 

with SDS by equilibrating the IPG strips in equilibration buffer 

I (6M urea, 30% (v/v) glycerol, 5% (w/v) SDS, 0.05 M Tris pH 

8.8, 1% (w/v) DTT) for 10 min. 
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26. Block free SH-groups of the separated proteins by 

equilibrating the IPG strips in equilibration buffer II (6M urea, 

30% (v/v) glycerol, 5% (w/v) SDS, 0.05 M Tris pH 8.8, 5% (w/v) 

iodoacetamide) for 10 min. 

27. For the SDS-PAGE as second dimension a 12% polyacrylamide 

gel run at 35 mA in a PROTEAN II XL Cell (Bio-Rad) proved to 

be suitable. 

28. Gels are stained with Coomassie (Page Blue Protein Solution, 

Fermentas) according to standard protocol (see the BEEBOOK 

paper on physiological and biochemical methods (Hartfelder 

et al., 2013)). 

Analysis of the 2D gels can be performed by using software 

PDQuest 8.0 (Bio-Rad). Protein identification can be achieved by mass 

spectrometric analysis followed by comparison of peptide masses and 

sequence information of the sample with different databases (see the 

BEEBOOK paper on physiological and biochemical methods (Hartfelder 

et al., 2013) and the BEEBOOK paper on chemical ecology (Torto et al., 

2013)). 

 

5.4. Differential proteomics of Paenibacillus larvae 

Liquid chromatography coupled directly to mass spectrometry 

provides another means for monitoring a proteome or changes in a 

proteome. Such global monitoring of changes in levels of proteins in 

response to a stimulus (e.g. a pathogen such as P. larvae) can 

provide very direct insight into the molecular mechanisms employed 

to respond to that challenge. For example, bee larvae up-regulate 

expression and activation of phenoloxidase in response to a P. larvae 

challenge (Chan et al., 2009). Mass spectrometry is currently the 

favoured detection method for monitoring the entire protein 

component of a system (i.e. the proteome), and various methods 

exist for comparing protein expression in one state to that in another. 

The most quantitative approach involves the use of stable isotopes to 

introduce a ‘mass tag’ into the proteins from two or more different 

conditions and then in subsequent mass spectrometric analyses, the 

intensities of the differently tagged forms reflect the relative 

quantities in the original sample. Several such labelling methods exist 

and are reviewed elsewhere (Ong et al., 2003), so here we focus on 

the method that has been used most extensively in honey bee 

proteomics. It involves the reductive dimethylation of primary amines 

in peptides using formaldehyde isotopologues. 
 

Assumptions: a suitable, controlled experiment should be 

designed to compare untreated bees/cells to equivalent samples 

treated with a stimulus or challenged with a pathogen. If the following 

steps cannot be carried out immediately, then samples can typically 

be stored as a cell pellet, tissue, or whole bee at -80˚C for weeks or 

months without protein degradation. 
 

 



5.4.1. Sample preparation 

5.4.1.1. Extract proteins 

Extract proteins into 50 mM NH4HCO3 (pH 8.0) with 1% sodium 

deoxycholate (ABC/DOC). 

Option 1: For cultured or primary cells: 

1. Wash cells first in PBS. 

2. Pellet at 600 x g. 

3. Remove supernatant. 

4. Solubilize the pellet in ABC/DOC at a ratio of 100 µl per 

2E+07 cells. 

The final protein concentration, measured by the BCA method, 

should be approximately 1 µg/µl. 

Option 2: For any bee tissues: 

1. Place the material in a beadmill tube with enough 6 M urea, 2 M 

thiourea and 50 mM Tris (pH 8.0) to fully immerse the tissue. 

2. Pulverize the tissue in a beadmill. 

 Determine the specific conditions empirically for each tissue 

and beadmill type. 

3. After milling, pellet insoluble material at 16,000 x g for 10 min 

at 4°C. 

4. Move the supernatant to a clean tube. 

5. Precipitate the proteins in the supernatant by adding four 

volumes of 100% ethanol, 20 µg of molecular biology-grade 

glycogen and 50 mM sodium acetate (pH 5, from a 2.5 M 

stock solution). 

6. Allow the solution to stand at RT for 90 min. 

7. Pellet the proteins by centrifuging for 10 min at 16,000 x g. 

8. Resuspend the pellet from this final step in ABC/DOC to bring 

the protein concentration to 1 µg/µl. 

 

5.4.1.2. Reduce, alkylate and digest proteins to peptides 

1. For each sample, add 1 µg dithiothreitol (from a stock solution 

of 1 µg/µl) to 50 µg total protein. 

2. Incubate the solution for 30 min at 37°C. 

3. Add 5 µg iodoaccetamide (from a stock solution of 5 µg/µl). 

4. Incubate for 20 min at 37°C. 

5. Add 1 µg trypsin (mass spectrometry-grade, Promega). 

6. Incubate overnight at 37°C. 

 

5.4.1.3. Clean up peptides 

1. Adjust pH of overnight digestion to ~2 using 10% acetic acid. 

2. For each sample, prepare a STAGE tip (Rappsilber et al., 2007) 

by pushing 20 µl methanol through, followed by 20 µl 0.5% 

acetic acid. 

3. Push 10 µg total peptide mass (based on original 50 µg input) 

through the STAGE tip. 

4. Wash each tip with 20 µl 0.5% acetic acid. 

5. Elute the peptides from each tip into a clean microfuge tube 

with 10 µl 80% acetonitrile, 0.5% acetic acid. 

6. Evaporate the solvent from each sample in a vacuum centrifuge. 
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5.4.1.4. Label peptides with stable isotopes 

1. Add 20 μl of 100 mM triethylammonium bicarbonate to each 

tube of dried peptides. 

2. Sonicate for 5 min to solubilize peptides. 

3. Add 20 μl of formaldehyde isotopologues to respective 

samples. 

200 mM CH2O (L)-light to the first sample. 

200 mM C2H2O (M)- medium to the second sample. 

200 mM 13C2H2O – heavy (H) to the third sample). 

4. Add 2 μl of 1 M light ALD solution (sodium cyanoborohydride) 

to the first (L) sample and second (M) sample. 

5. Add 2 μl of 1 M heavy ALD solution (sodium cyanoborodeuteride) 

to the third (H) sample. 

6. Sonicate for 5 min. 

7. If required, centrifuge for 1 min at low speed to collect all of 

the solution at the bottom. 

8. Leave at ambient temperature in the dark for 90 min. 

9. Add 20 μl of 3.0 M NH4Cl. 

10. Leave at ambient temperature in the dark for 10 min. 

11. Add acetic acid until pH < 2.5. 

 

5.4.1.5. Clean up peptides 

1. From the final step in paragraph 5.4.1.4. ‘Label peptides with 

stable isotopes’, combine the two (for duplex labelling) or 

three (for triplex labelling) into a single tube. 

2. Repeat all steps from paragraph 5.4.1.3. ‘Clean up peptides’ 

above, eluting the peptides in step 5 into a 96-well microwell 

plate. 

 

5.4.1.6. Mass spectrometry analysis 

1. Analyze the combined sample with at least a two-hour 

gradient into a liquid chromatography-tandem mass 

spectrometry system (LC-MS/MS). 

 Most labs will access such a system through a core facility 

rather than operating the system themselves. Interested 

readers are referred elsewhere for details on setting up such a 

system (Forner et al., 2007). 

2. Search the LC-MS/MS data against a protein database using 

MaxQuant (Cox and Mann, 2008), Proteome Discoverer (from 

ThermoFisher) or SpectrumMill (from Agilent). 

Background on the principles underlying such database searching 

has been covered elsewhere (Forner et al., 2007). The database 

should contain all protein sequences from all species that might be in 

the sample. For example, if the experiment has involved infecting 

bees with P. larvae, the database should contain all A. mellifera and 

all P. larvae sequences available from their respective genome project 

pages in GenBank. The search engines mentioned above should also 

report the isotope ratios representing the relative amounts of each 

protein detected among the different samples. 

 



5.5. Expression of heterologous proteins in 

Paenibacillus larvae 

The understanding of phenotypic differences within the species P. larvae 

(Genersch and Otten, 2003; Genersch et al., 2005; Neuendorf et al., 

2004; Rauch et al., 2009) and the role of genotype-specific putative 

virulence factors (Fünfhaus et al., 2009; Fünfhaus and Genersch, 2012) 

have been hampered by the lack of molecular tools allowing genetic 

manipulation of this pathogen. 

To functionally analyse putative virulence factors during bacterial 

pathogenesis, the corresponding genes need to be disrupted, 

manipulated, or labelled for specific visualisation. Likewise, the 

expression of homologous or heterologous proteins in P. larvae would 

be a valuable tool to further study the molecular pathogenesis of  

P. larvae infections. Recently, the first protocol for the expression of a 

foreign protein (green fluorescent protein, GFP) in P. larvae has been 

described (Poppinga and Genersch, 2012). Since GFP expression is 

one of the most successful molecular tools to specifically label 

proteins and to visualize them under native conditions (Tsien, 1998), 

this can be considered a breakthrough in AFB research. Constitutive 

expression of GFP in P. larvae will help to visualize and quantify 

bacterial cells in larval experiments. Additionally, GFP-fused virulence 

factors that are expressed during infection can be detected and 

visualised in and/or outside the bacterial cell. 

 

5.5.1. Transformation of Paenibacillus larvae 

For this purpose plasmid pAD43-25 (BGSC, Bacillus Genetic Stock 

Center), carrying the gene sequence for a GFP variant (gfpmut3a), 

was transformed into wild type P. larvae strains ATCC9545 and 04-309 

representing both relevant genotypes ERIC I and ERIC II, respectively 

(Genersch et al., 2005, 2006). Plasmid pAD43-25 functions as an E. 

coli/Gram-positive shuttle vector and enables bacteria to constitutively 

express the GFP variant gfpmut3a (Dunn and Handelsman, 1999). 

High level constitutive expression of mutant GFP in vegetative cells is 

facilitated by the Bacillus cereus UW85 Pupp promoter upstream of 

gfpmut3a. Mutant gfpmut3a has an optimal excitation wavelength of 

498 nm and the plasmid contains a chloramphenicol resistance cassette. 

The first critical step of the molecular manipulation of P. larvae is 

the uptake of foreign DNA, e. g. plasmid DNA. Because P. larvae is a 

gram-positive bacterium, transformation needs a high voltage electric 

pulse for a successful uptake of foreign plasmid DNA. For this purpose 

electrocompetent bacterial cells need to be prepared as described by 

Murray and Aronstein (2008): 

1. Grow P. larvae cultures to early exponential phase (OD600 

0.3). 

2. Harvest by centrifugation. 

3. Wash bacterial pellets three times using 0.625 M sucrose. 
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4. Resuspend the final bacterial pellet in 1/500 of the initial 

culture volume. 

5. Store at -80°C in 40 µl aliquots. 

Electrocompetent P. larvae cells can then be transformed with a 

plasmid containing a GFP-gene like pAD43-25 using the following 

protocol: 

1. For pAD43-25 transformation, thaw competent cells at 4°C. 

2. Add 500 ng of pAD43-25 in a maximum volume of 10 µl. 

3. During an incubation time of 15-20 min gently mix each 

transformation tube every 5 min. 

4. Pulse probes in ice cold 1 mm electroporation cuvettes 

(Eppendorf). 

5. The best transformation results can be achieved with 9 kV/cm 

for representatives of the genotype ERIC I and 10 kV/cm for 

representatives of the genotype ERIC II. An average of 

1.8E+04 and 1.1E+06 transformants per 0.5 µg DNA 

(3.6E+04 and 2.2E+06 transformants per µg DNA) for ERIC I 

and ERIC II, is obtained using these conditions. 

6. Immediately transfer transformation tubes containing shocked 

cells to 960 µl pre-warmed MYPGP broth. 

7. Incubated at 37°C for 16 hours with shaking (350 x g). 

8. Dilute regenerated transformation mixes. 

9. Plate on MYPGP agar supplemented with 5 µg/ml 

chloramphenicol. 

10. Incubate agar plates at 37°C. 

11. Determine the number of colony forming units (cfu) after 3 days. 

 

5.5.2. Detection of GFP-expression 

For GFP detection in the vegetative recombinant P. larvae isolates 

ATCC9545 (ERIC I) + pAD43-25 and P. larvae 04-309 (ERIC II) + 

pAD43-25, clones can be cultivated and analysed during different 

stages of growth in liquid MYPGP media (Dingman and Stahly, 1983), 

supplemented with 5 µg/ml chloramphenicol. In each bacterial stage 

of growth, 10 µl aliquots of the suspension are analysed bright field 

microscopically using differential interference contrast (DIC). 

Fluorescence activity is detected by a FITC filter block (e.g. Nikon Ti-E 

Inverted Microscope). All stages of growth are analysed and it can be 

observed that the rate of gfpmut3a expressing P. larvae clones 

remains stable throughout the logarithmic as well as the stationary 

growth phase, indicating that plasmid pAD43-25 is correctly replicated 

throughout bacterial growth. 

Expression of GFP remained stable even after sporulation and 

germination. This is an essential prerequisite for using recombinant 

bacteria in infection assays because only spores can be used for 

infection, and the vegetative bacteria inside the larvae should still 

carry and express the introduced gene. 



5.6. Fluorescent in situ hybridization for the 

detection of Paenibacillus larvae 

Recently, Yue and collaborators (Yue et al., 2008) described a P. larvae 

specific method based on a previously described general technique of 

fluorescence in situ hybridization (FISH) (Moter et al., 1998). FISH 

methods are based on specific binding of fluorescent-labelled 

oligonucleotide probes to complementary sequences in fixed and 

permeabilized sections (Itzkovitz and van Oudenaarden, 2011). This 

approach provides a highly specific method to visualize P. larvae in 

infected larval histological sections, thereby allowing disease 

monitoring and observation of the life cycle of the bacterium inside 

the host. P. larvae FISH methodology uses a specific complementary 

P. larvae 16S rRNA targeted oligonucleotide probe coupled with 

fluorescein isothiocyanate (FITC), that specifically binds to P. larvae 

rRNA. Since bacterial cells are filled with ribosomes, this technique 

allows the ”staining“ of the vegetative bacteria. In order to 

simultaneously visualize the cytoplasm of larval cells, cyanine Cy3-

labeled oligonucleotides universally detecting conserved 18S rRNA 

eukaryotic sequences are used. Finally, 4',6-diamidino-2-phenylindole 

(DAPI), a fluorescent dye that binds A-T rich regions of DNA, is 

employed to visualize cell nuclei. 

The following protocol provides a method to fix and embed larval 

tissues, in order to obtain histological sections, as well as for further 

processing these sections by fluorescence in situ hybridization. 

 

5.6.1. Preparation and embedding of larval tissues 

1. Perform infection assays as described in section 4.1. 

2. Wash each larva for 5 seconds with 100% ethanol. 

3. Fix larvae by overnight incubation with 4% Roti Histofix (Roth, 

Karlsruhe) at 4°C at 20 rpm. 

4. Wash samples overnight with 1X PBS solution containing 6.8% 

sucrose under the same conditions. 

5. Wash samples with 100% acetone. 

 During the first five minutes, change acetone until the solution 

becomes clear. 

6. Incubate with the final change of acetone for 1 hour under 

the same conditions. 

7. Mix equal volumes of 100% acetone and Technovit 8100 

solution (Heraeus Kulzer, Wehrheim).  

8. Incubate samples for 2 hours with this solution under 

previous conditions. 

9. Perform infiltration and embedding using Technovit 8100 

according to manufacturer´s instructions. 

10. Cut 4 µm-sections using a microtome, straighten them with 

warm sterile water on slides. 

11. Store slides at 4°C until further use. 
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5.6.2. Performing fluorescence in situ hybridization 

1. Sections should be rehydrated and prepared for hybridization 

as follows in order to improve permeability: 

 1.1. Wash slides with xylene 3 x 10 min. 

 1.2. Wash slides with 100% ethanol 3 x 3 min. 

 1.3. Wash slides with 90% ethanol 2 x 3 min. 

 1.4. Wash slides with 80% ethanol 2 x 3 min. 

 1.5. Wash slides with 70% ethanol 1 x 3 min. 

 1.6. Wash slides with 50% ethanol 2 x 3 min. 

 1.7. Wash slides with double distilled water (DEPC) 2 x 3 min. 

 1.8. Incubate slides with 1 mg/ml Proteinase K in 0.2M Tris-HCl 

(pH 7.9) for 5 min at 37°C in a humid chamber. 

 1.9. Incubate slides with 1 mg/ml lysozyme in DEPC double-

destilled water for 15 min at 37°C in a humid chamber. 

 1.10. Wash slides three times with 1X PBS. 

2. Incubate slides with 100 ng of each probe (specific bacterial 

16S rRNA-probe and universal eukaryotic 18S rRNA-probe) 

diluted in 20 µl of FISH-hybridization buffer (20% (v/v) 

deionized formamide, 0.9 M NaCl, 20 mM Tris-HCl pH 7.9, 

0.01% (m/v) SDS). 

3. Cover with slip and transfer to a Corning chamber. 

4. Dispense double-distilled water into the cavities of the 

chamber and close it. 

5. Incubate in a humid chamber at 46°C from 4 h to overnight. 

6. Carefully remove cover slip in 1X PBS. 

7. Wash slides three times with 1X PBS. 

8. Add 50 µl of DAPI solution (1 µg/ml in methanol) to each slide. 

9. Cover again. 

10. Incubate at RT for 10 min. 

11. Remove cover slip in 1X PBS and wash slides three times with 

1X PBS. 

12. Mount slides with antifade reagent. 

 
 

6. Final remarks 

In the past decade, different basic issues related to American 

foulbrood have been addressed, including the reclassification of its 

aetiological agent (Genersch et al., 2006; Ashiralieva and Genersch, 

2006), the development of methods for genotyping (Genersch and 

Otten, 2003; Alippi et al., 2004; Genersch et al., 2006; Antúnez et al., 

2007) and the annotation of its genome sequence (Qin et al., 2006; 

Chan et al., 2011). The latter permitted the introduction of techniques 

for studying the bacterial transcriptome and proteome. Candidate 

reference genes and the methods to select them have been described 

in this paper.  The availability of a protocol for heterologous expression 

of foreign proteins in P. larvae can be considered a great breakthrough 



in AFB research (Poppinga and Genersch, 2012). Nevertheless, we are 

only at the start of understanding the intimate relationship between  

P. larvae and its host. We hope that methods that are presented in 

this paper can help scientists to further explore the secrets of 

American foulbrood disease in honey bees. 
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