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Sentinel sites, where problems can be identified early or investigated in detail,

form an important part of planning for exotic disease outbreaks in humans,

livestock and plants. Key questions are: how many sentinels are required,

where should they be positioned and how effective are they at rapidly identi-

fying new invasions? The sentinel apiary system for invasive honeybee pests

and diseases illustrates the costs and benefits of such approaches. Here, we

address these issues with two mathematical modelling approaches. The first

approach is generic and uses probabilistic arguments to calculate the average

number of affected sites when an outbreak is first detected, providing rapid

and general insights that we have applied to a range of infectious diseases.

The second approach uses a computationally intensive, stochastic, spatial

model to simulate multiple outbreaks and to determine appropriate sentinel

locations for UK apiaries. Both models quantify the anticipated increase in suc-

cess of sentinel sites as their number increases and as non-sentinel sites become

worse at detection; however, unexpectedly sentinels perform relatively better

for faster growing outbreaks. Additionally, the spatial model allows us to

quantify the substantial role that carefully positioned sentinels can play in

the rapid detection of exotic invasions.
1. Introduction
The aim of surveillance in a biosecurity context is to monitor for changes to the

health of human, animal or plant populations, and is essential to provide evidence

of the absence of a disease or pest organism [1]. In addition, surveillance—either

focused or applied en masse—is a key method of detecting novel or unexpected

patterns, which may signify the invasion or emergence of new health issues [2].

Early interception is particularly important when considering the spread of an

invasive pest or disease to a new territory, because timely detection may allow

eradiation rather than establishment [3]. Sentinel surveillance concentrates

activities on selected subpopulations to enhance detection and improve cost-

effectiveness of surveillance efforts [4]. The term ‘sentinel’ invokes the concept

of standing guard or keeping watch, and can be used in many different surveil-

lance contexts. Sentinels can be deliberately placed, like the classic miner’s

canary [4], or they may be more observational, like crow deaths preceding

human outbreaks of West Nile virus [5] or even simply selected locations with

heightened levels of detection and effective reporting [6].

Here, we develop two distinct but complementary approaches to quantify

the impact of intense-surveillance sentinel locations on the early detection of
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outbreaks. The first method is tractable and derives explicit

mathematical formulae for the probability of detection given a

general exponentially growing outbreak. The second method

is tailored to honeybee pests and diseases in the UK, and

allows us to assess the spatial aspect of outbreaks and hence

the potential to choose optimal sentinel apiary locations. We

assume that each apiary contains a constant number of hives

throughout all time and all simulations, but there is considerable

heterogeneity between apiaries as captured by National Bee

Unit (NBU) recorded inspections. In both models, non-sentinel

(normal) sites are assumed to detect an invasive species at a low

constant rate; by contrast, at sentinel locations it is assumed that

regular inspections are carried out which have a substantially

higher chance of detecting an invading organism if it is present

at the location. Therefore, in both models, the driving force is

the rapidly increasing number of sites that are affected, increas-

ing the likelihood both that one of the owners notices the

pest/disease and that a sentinel is affected.

The global trade in honeybees and their hive products has

resulted in the concomitant movement of their pests and

parasites including: small hive beetle [7,8], Asian hornet [9],

the microsporidium Nosema ceranae [10] and ectoparasitic

mites Varroa destructor [11] and Tropilaelaps spp. [12]. Each inva-

sion can affect the health of the resident honeybee population,

leading to large-scale colony deaths (e.g. Varroa [11] and

Nosema [13]). Failed early eradication can result in long-term

impacts on pollinator health and necessitate continued efforts

on containment and mitigation, both of which have significant

economic consequences [3,14]; for example, the cost of failing

to eradicate Varroa in the UK has been estimated at over

£27 million annually [15]. To enable the early detection and era-

dication of exotic honeybee parasites the NBU already

supports a network of 131 sentinel apiaries across England

and Wales.

Our aims in this paper are to explore the generalities of

using sentinel locations to rapidly detect invading organisms,

considering under which circumstances sentinels are most

likely to offer a substantial benefit. These concepts are then

extended to the specific problem of honeybee pests and

pathogens, and we predict the impact of sentinel apiaries

and how their spatial arrangement could be improved.
2. The tractable model
Both the mathematically tractable model and the spatial simu-

lation adopt the same assumptions about detection and the

action of sentinels, based on the probability of initially detect-

ing a novel invasion (at sentinel and non-sentinel locations).

For non-sentinel locations, we assume that there is a daily

independent probability, p, that infection is identified at each

(infected) location and reported to the authorities. Sentinel

locations are assumed to be at a proportion, s, of potential

sites and are periodically inspected, with a time T between

inspections. Throughout this work, we assume that the peri-

odic inspection of a sentinel location always correctly

identifies infection, and that infection is immediately detect-

able; both of these assumptions help to clarify the results and

reduce the number of model parameters, but have limited

qualitative impact on the efficacy of sentinels (see the electronic

supplementary material).

From these assumptions, relatively simple algebraic

manipulation generates an explicit formula for the probability
of first detection of an epidemic on a given day assuming

exponential growth of new cases (see the electronic sup-

plementary material). In general, this probability is a

function of four variables ( p, s, T and the growth rate of

the epidemic, r) as well as time. However, examining the par-

ameter conditions when the sentinels are equally likely to

detect infection as non-sentinels, we can parsimoniously

quantify the proportion of locations that need to be sentinels

to have a substantive impact on the early detection of a novel

outbreak (figure 1a). It is clear, and intuitive, that sentinel

locations are most effective at detecting outbreaks where indi-

vidual infections are likely to remain undetected for long

periods of time ( p small), when even a low number of senti-

nel locations can be highly beneficial. Additionally, outbreaks

that grow more slowly (r small) require higher proportions of

sentinels for them to be equal to random detection.

Picking a specific epidemic growth rate (r), we can more

readily quantify the potential impact of a small proportion of

sentinel locations. In particular, we compare outbreaks that

double over different time periods (one week in figure 1b or

1 year in figure 1c). Mean time to detection at a non-sentinel

location (1/p) is again the key determinant of the expected out-

break size (at the point of detection), with the growth rate of the

outbreak (r) playing a secondary but significant role. Of more

applied interest is the impact of a small proportion of sentinels

(s , 10%). For slow growing outbreaks (figure 1c) a few senti-

nels (s , 0.5%) make a limited difference; however, for more

rapid outbreaks (figure 1b) even having just a thousandth of

the population as sentinels (s ¼ 0.1%) substantially reduces

the size of the outbreak, especially when non-sentinel detection

times are long.

Such simple mathematical models therefore suggest that

sentinel locations can have a substantial practical benefit,

although arguably a concerted effort to improve education

and awareness such that non-sentinel infections are detected

faster (1/p is decreased) may be a more efficient use of

resources, despite the practical difficulties associated with

achieving such a policy.
3. The spatial model
The mathematical model defined above provides considerable

generic understanding of the impact of sentinel locations,

but lacks multiple features of the real-world problem. Most

notably, many epidemics have a strong spatio-temporal com-

ponent [21], with infection often spreading as a stochastic

wave [22]. This is in direct contrast to the analytical model

above which assumed a simple exponential increase and ran-

domized infection of locations. In addition, sentinels are

generally not randomly selected from the entire population,

but are strategically chosen to maximize the chance of detect-

ing an infection early. Here, we use the detection of pathogen

invasion into the honeybee population of England and Wales

as a well-defined data-rich spatial problem that has wide-

ranging implications, although the decline in honeybees,

often as a result of invasive pests, is a worldwide problem.

We now consider the results of stochastic spatial simulations

(figure 2) parametrized to match recorded patterns of invasion

and disease (the electronic supplementary material offers a full

description of the model). Our aim was to select sentinel

apiaries that minimize the average outbreak size. This is a com-

putationally demanding process, which in general would

http://rsif.royalsocietypublishing.org/
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Figure 1. Theoretical prediction of outbreak sizes at detection. (a) The critical
proportion of sentinels required to be equal to owner detection; coloured
lines show the estimated doubling times for five diseases: blue tongue
virus (BTV) in cattle [16], West Nile virus (WNV) in wild birds [17], foot-
and-mouth disease (FMD) in sheep [18], low-pathogenicity avian influenza
(LPAI) in chickens [19], Varroa in honeybees and bovine tuberculosis (bTB)
in GB cattle herds [20]. Lines correspond to the doubling time given by epi-
demiological parameters from the literature, while thick lines correspond to
approximate detection rates by owners. (b,c) Impact of low proportions of
sentinels on the size of an outbreak at the time of detection, measured
as the number of infested apiaries. For faster growing epidemics (b) the out-
breaks are larger but sentinels have greater impact. (Throughout we assume
the time between surveillance visits for sentinels T ¼ 28 days.)
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require many simulations for each potential sentinel apiary con-

figuration to evaluate the expected impact, to be repeated for

multiple configurations. However, given that we are only inter-

ested in the behaviour up to the point of detection, and that no
specific controls can be applied before detection, this compu-

tational burden can be greatly reduced. By storing the data from

multiple stochastic epidemics (in the absence of controls, sentinels

and owner detection) the chance of detection at any given time

point can be calculated numerically for any configuration of

sentinel apiaries or parameters for owner detection.

The simulations use the known location of apiaries in

England and Wales and capture local transmission, infection

dynamics within an apiary and long-range transmission

between apiaries owned by the same beekeeper [23]. The par-

ameters are chosen to capture the observed spatial spread of

multiple honeybee diseases, and lead to epidemics that

spread over a period of years, with an early doubling time of

around four to six months. All simulations are begun with

10 infected apiaries chosen to be in close proximity (within

10 km) to locations that are considered to represent a potential

risk of importing a novel pest or disease (figure 2a). In decreas-

ing order of risk, these locations are: package bees/nucleus

importers, queen importers, imported honey packers, hive pro-

ducts importers, fruit and vegetable wholesale markets, zoos,

plant importers, freight depots or ports, airports, quarantine

facilities (all shown as coloured dots in figure 2a), apiaries

along the south coast, and all apiaries (see the electronic sup-

plementary material for a greater description of these import

locations). The current selection of 131 sentinel apiary locations

provides a relatively uniform coverage of England and Wales,

which equalized the demands on regional bee inspectors

(figure 2b).

The risk of any apiary being infected at the end of a 3 year

simulation (figure 2c) closely mirrors the distribution of

import risks. Hence the hotspots for infection closely match

the large urban areas in the Midlands, the northeast of

England and Manchester, with London dominating. We

stress that this pattern is predominantly driven by the risk

of imports into the regions, rather than preferential spread

to these regions as the simulated epidemics progress. Given

these results, it is unsurprising that the most effective distri-

butions of sentinels also mimics this pattern, with many

more sentinels in the southeast of the country (figure 2d ).

With over 50 000 apiaries in England and Wales an exhaus-

tive search of all possible sentinel apiary configurations is

impossible and therefore we cannot state that the locations

predicted are truly optimal; however, they represent a sub-

stantial improvement over random placements—although

individual positions should be finessed by local knowledge.

Figure 3a compares the results of the theoretical model

(green dots, see figure 1) with a random placement of sentinels

in the full spatial model (black squares); despite the extreme

differences in modelling approach, both methods are in close

agreement. However, more striking is that the current place-

ment of sentinels (red triangles) has an impact that is

indistinguishable from a random placement of the same

number of sentinel apiaries. By contrast, using a carefully

chosen set of sentinel apiaries more closely linked to import

risk locations can substantially reduce both the time to detec-

tion and the expected size of the outbreak at the moment of

detection (figure 3b). In fact, careful spatial placement of 131

sentinels performs as well as random placement of around

500 sentinels, generating a huge improvement in efficiency.

This is to be expected—not only are the locations of sentinels

chosen to substantially increase the risk of detection, but also

the choice of initial seeding based on risk locations greatly

constrains the patterns of greatest infection.

http://rsif.royalsocietypublishing.org/
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Throughout we have assumed that sentinel inspections

take place regularly, with inspections scheduled on a

monthly basis—which matches brood time scales within the

hive. However, a key question concerns the optimal use of

sentinels in a resource-limited setting: is it better to repeat-

edly visit highest-risk sentinel apiaries or visit a larger

number less frequently? Assuming very slow owner detec-

tion rates (1/p ¼ 100 years, such that without sentinels it

takes 2–3 years to detect an infection), the impact of different

combinations of sentinel numbers and inspection interval is

assessed (figure 3c). For a given amount of effort (inspections

per week), an intermediate trade-off between numbers and

frequency is optimal; visiting the chosen sentinels three to

five times in a season in general gives the greatest impact.

Finally, we return to the question of whether there are any

general insights governing the optimal arrangement of senti-

nels. We tessellate the landscape by assigning each apiary to

the nearest sentinel location, and examine the properties of all
apiaries local to each sentinel. We find that the expected

amount of infection local to each sentinel remains relatively con-

stant even as the spacing between sentinels changes (figure 3d).

We note that sentinels associated with relatively low levels of

infection in their local environment are generally within clusters

of high risk promoting detection in these areas. This suggests, as

may be expected, that the sentinels are arranged to inform

about similar levels of infection in their surrounding environ-

ment; this may provide a simpler mechanism for determining

the placement of sentinels in general.
4. Discussion
Invasive pests and diseases are a major threat to the health of

human, livestock and wildlife populations. Key to the control

of such novel invasions is early detection, allowing controls to

be enacted while the pathogen is still at low numbers [24,25].

http://rsif.royalsocietypublishing.org/
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Sentinel surveillance may have a crucial role to play in this early

detection [26]. As shown here, fast growing invasions which are

difficult to detect in the general population substantially benefit

from the presence of sentinels; additionally, an understanding

of risk factors can provide substantial benefits from a refined

spatial arrangement of sentinel locations.

There are considerable risks to UK honeybees posed by

invading pests, pathogens and parasites of bees, including:

Tropilaelaps mites, small hive beetle (which invaded Italy in

2014) and Asian hornet (which arrived in the UK in 2016).

Early detection of such invasions is a key element of control,

and our models suggest that this can be achieved in two differ-

ent ways. Greater vigilance on the part of the general population

(reducing the mean time to detection 1/p in the non-sentinel

population) has a dramatic impact on detection. This suggests

that education and awareness campaigns may be a key tool in

the fight against invaders. However, such national campaigns

may be costly and a full cost–benefit analysis would need to

be conducted to compare the cost-effectiveness.

We demonstrate that careful positioning of sentinels

across the landscape (reflecting the most probably introduc-

tion points [27]) can have a profound influence on early

detection, greatly improving on random or uniformly distrib-

uted inspection locations—a facet we postulate will hold for

any host species and invasive pests or pathogens. This
rapid detection is contingent on good geographical knowl-

edge of where pests are likely to invade. We find that

sentinel apiaries should largely reflect the spatial pattern of

import risks, which clusters in the southeast of England

and around London. In particular, if we associate each

apiary with its nearest sentinel, then the optimal pattern

has approximately equal levels of infection associated with

its neighbouring apiaries—providing a generic means of

positioning with a minimum of computational effort.

These analyses raise the critical applied question of how

many sentinel apiaries the UK needs. This is a value judgement,

balancing the cost of sentinel apiaries against the risk of a novel

outbreak remaining undetected. It is clear from figures 1 and 3

that even a limited number of sentinel apiaries can be highly

beneficial for preventing large-scale undetected outbreaks. It

is also apparent that having many thousands of sentinel api-

aries is both impractical and unlikely to generate huge

additional improvements. This suggests advantages to a care-

fully parametrized cost–benefit analysis to balance continual

costs of operating a network of sentinel apiaries against the sto-

chastic benefits of early detection and therefore more likely and

less expensive eradication of invasive pests and pathogens.
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